Advertisement

European Journal of Applied Physiology

, Volume 112, Issue 7, pp 2777–2781 | Cite as

Effects of exercise stress on the endocannabinoid system in humans under field conditions

  • M. Feuerecker
  • D. Hauer
  • R. Toth
  • F. Demetz
  • J. Hölzl
  • M. Thiel
  • I. Kaufmann
  • G. Schelling
  • A. ChoukèrEmail author
Short Communication

Abstract

The effects of physical exercise stress on the endocannabinoid system in humans are almost unexplored. In this prospective study, we investigated in a crossover design and under field conditions at different altitudes the effects of physical exercise on the endocannabinoid system (ECS) in 12 trained healthy volunteers. For determination of alterations on the ECS three different protocols were analyzed: Protocol A (physical exercise at lower altitude) involved strenuous hiking below 2,100 m, whereas Protocol B (physical exercise by active ascent to high altitude) involved hiking up to 3,196 m, an accommodation at the cottage and a descent the next day. Protocol C (passive ascent) included a helicopter ascent to 3,196 m, an overnight stay at this altitude and a flight back to the base camp the following day. The cumulative hiked altitude in Protocol A and B was comparable (~1,650 m). The blood EC concentrations of anandamide increased significantly in Protocol A/B from baseline (T0) 0.12 ± 0.01/0.16 ± 0.02 (mean ± SEM) to 0.27 ± 0.02/0.42 ± 0.02 after exercise (T1) (p < 0.05). Anandamide levels in Protocol C remained stable at 0.20 ± 0.02. We conclude that the ECS is activated upon strenuous exercise whereas the combination with hypoxic stress further increases its activity. The reduced partial pressure of oxygen at high altitude alone did not affect this system. In summary, physical exercise activates the endocannabinoid system, whereas the combination with high altitude enhances this activation. This discloses new perspectives to adaptation mechanisms to physical exercise.

Keywords

Endocannabinoids Anandamide 2-AG Exercise Sport 

Notes

Acknowledgments

The authors thank the volunteers of the South Tyrolean Mountain Rescue Service who generously spent their time and participated with enthusiasm. We also thank Dr. G. Andergassen, Dr. G. Rammlmair, Prof. F. Christ, Dr. S. Kofler, Dr. M. Choukèr, M. Hoelzl, O. Zorzi, Dr. C. Moser, Dr. M. Niklas, Dr. J. Abicht, S. Schröpfer and Prof. Dr. M. Vogeser for continuous help during the study. This field study was supported by a research grant from the South Tyrolean Department of Health and by Siemens Medical Solutions, Munich, Germany, the Department of Anaesthesiology, and Department of Intensive Care Medicine of Brixen (Italy) and Munich (Germany), respectively.

Conflict of interest

The authors have no conflicts of interest or financial ties to disclose.

References

  1. Carrier EJ, Patel S, Hillard CJ (2005) Endocannabinoids in neuroimmunology and stress. Curr Drug Targets CNS Neurol Disord 4:657–665PubMedCrossRefGoogle Scholar
  2. Chen-Izu Y, Xiao RP, Izu LT, Cheng H, Kuschel M, Spurgeon H, Lakatta EG (2000) G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels. Biophys J 79:2547–2556PubMedCrossRefGoogle Scholar
  3. Choukèr A, Demetz F, Martignoni A, Smith L, Setzer F, Bauer A, Holzl J, Peter K, Christ F, Thiel M (2005) Strenuous physical exercise inhibits granulocyte activation induced by high altitude. J Appl Physiol 98:640–647PubMedCrossRefGoogle Scholar
  4. De Petrocellis L, Di Marzo V (2009) An introduction to the endocannabinoid system: from the early to the latest concepts. Best Pract Res Clin Endocrinol Metab 23:1–15PubMedCrossRefGoogle Scholar
  5. Di Marzo V, Verrijken A, Hakkarainen A, Petrosino S, Mertens I, Lundbom N, Piscitelli F, Westerbacka J, Soro-Paavonen A, Matias I, Van Gaal L, Taskinen MR (2009) Role of insulin as a negative regulator of plasma endocannabinoid levels in obese and nonobese subjects. Eur J Endocrinol 161:715–722PubMedCrossRefGoogle Scholar
  6. Flinn MV, Nepomnaschy PA, Muehlenbein MP, Ponzi D (2011) Evolutionary functions of early social modulation of hypothalamic-pituitary-adrenal axis development in humans. Neurosci Biobehav Rev 35:1611–1629PubMedCrossRefGoogle Scholar
  7. Hill MN, McEwen BS (2010) Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol Psychiatry 34:791–797PubMedCrossRefGoogle Scholar
  8. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112PubMedCrossRefGoogle Scholar
  9. Mackie K (2006) Mechanisms of CB1 receptor signaling: endocannabinoid modulation of synaptic strength. Int J Obes (Lond) 30(Suppl 1):S19–S23CrossRefGoogle Scholar
  10. Mackie K (2008) Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 20(Suppl 1):10–14PubMedCrossRefGoogle Scholar
  11. Movahed P, Evilevitch V, Andersson TL, Jonsson BA, Wollmer P, Zygmunt PM, Hogestatt ED (2005) Vascular effects of anandamide and N-acylvanillylamines in the human forearm and skin microcirculation. Br J Pharmacol 146:171–179PubMedCrossRefGoogle Scholar
  12. Schmidt A, Brune K, Hinz B (2006) Determination of the endocannabinoid anandamide in human plasma by high-performance liquid chromatography. Biomed Chromatogr 20:336–342PubMedCrossRefGoogle Scholar
  13. Sparling PB, Giuffrida A, Piomelli D, Rosskopf L, Dietrich A (2003) Exercise activates the endocannabinoid system. Neuroreport 14:2209–2211PubMedCrossRefGoogle Scholar
  14. Steiner MA, Wotjak CT (2008) Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis. Prog Brain Res 170:397–432PubMedCrossRefGoogle Scholar
  15. Sugiura T, Kishimoto S, Oka S, Gokoh M (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45:405–446PubMedCrossRefGoogle Scholar
  16. Tasker J (2004) Endogenous cannabinoids take the edge off neuroendocrine responses to stress. Endocrinology 145:5429–5430PubMedCrossRefGoogle Scholar
  17. Vogeser M, Schelling G (2007) Pitfalls in measuring the endocannabinoid 2-arachidonoyl glycerol in biological samples. Clin Chem Lab Med 45:1023–1025PubMedCrossRefGoogle Scholar
  18. Vogeser M, Hauer D, Christina Azad S, Huber E, Storr M, Schelling G (2006) Release of anandamide from blood cells. Clin Chem Lab Med 44:488–491PubMedCrossRefGoogle Scholar
  19. Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A (2008) Catecholamines and the effects of exercise, training and gender. Sports Med 38:401–423PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Feuerecker
    • 1
  • D. Hauer
    • 1
  • R. Toth
    • 1
    • 3
  • F. Demetz
    • 1
    • 4
  • J. Hölzl
    • 2
  • M. Thiel
    • 5
  • I. Kaufmann
    • 1
  • G. Schelling
    • 1
  • A. Choukèr
    • 1
    Email author
  1. 1.Department of AnaesthesiologyKlinikum Großhadern, University of MunichMunichGermany
  2. 2.Department of MedicineSouth Tyrolean Mountain RescueBolzanoItaly
  3. 3.School of Ph.D. studies Semmelweis UniversityBudapestHungary
  4. 4.Notfallklinik, Klinikum IngolstadtIngolstadtGermany
  5. 5.Clinic of Anaesthesiology and Intensive Care, Klinikum MannheimUniversity of MannheimMannheimGermany

Personalised recommendations