European Journal of Applied Physiology

, Volume 112, Issue 7, pp 2409–2420

Single and combined influence of ACE and ACTN3 genotypes on muscle phenotypes in octogenarians

  • Nuria Garatachea
  • Carmen Fiuza-Luces
  • Gema Torres-Luque
  • Thomas Yvert
  • Catalina Santiago
  • Félix Gómez-Gallego
  • Jonatan R. Ruiz
  • Alejandro Lucia
Original Article


We studied the single and combined influence of the ACE I/D and the ACTN3 R577X polymorphisms on muscle phenotypes (thigh muscles’ cross-sectional area assessed with magnetic resonance imaging) and strength (maximal handgrip, 30-s chair stand test), functional ability during activities of daily living (Barthel index) and bone mineral density (proximal femur) in Caucasian (Spanish) community-dwelling old people [n = 81, 59 women; mean age 82.8 ± 4.8 years (range 71–93 years)]. We found no significantly differences in the aforementioned phenotypes across ACE and ACTN3 genotypes (all P > 0.05), except for handgrip in the ACE I/D recessive model (DD 19.5 ± 6.7 kg, ID 24.0 ± 9.1 kg, II 22.1 ± 7.9; P = 0.047), yet statistical significance disappeared after correction for multiple comparisons. Likewise, the analyses of the combined effects between genotypes did not yield any significant difference (all P > 0.05) between the two ‘extreme’ genotypes [theoretically ‘power or muscularity oriented’ [(ACTN3 RR + RX & ACE DD) versus ‘non-power’ (ACTN3 XX & ACE II + ID)]. The aforementioned analyses were adjusted by sex, age and physical activity levels as covariates. Logistic regression analysis revealed no significant association of single or combined effect of ACE and ACTN3 genotypes or genotype combination group (ACE + ACTN3) with sarcopenia (i.e. being in the lowest 25th sex-specific percentile for a combined score of the muscle and functional phenotypes we measured). Though ACE I/D and ACTN3 R577X polymorphisms are candidates to modulate exercise-related phenotypes in adults, our data suggest that they do not exert a major influence in the muscle phenotypes of old people. More studies with larger sample sizes are needed.


Gene Sarcopenia Elderly 


  1. Attia J, Ioannidis JP, Thakkinstian A, McEvoy M, Scott RJ, Minelli C, Thompson J, Infante-Rivard C, Guyatt G (2009) How to use an article about genetic association: B: are the results of the study valid? JAMA 301(2):191–197. doi:10.1001/jama.2008.946 PubMedCrossRefGoogle Scholar
  2. Baztán JJ, Pérez del Molino J, Alarcón T, San Cristóbal E, Izquierdo G, Manzarbeitia J (1993) Índice de Barthel: Instrumento válido para la valoración funcional de pacientes con enfermedad cerebrovascular. Rev Esp GeriatrGerontol 128:32–40Google Scholar
  3. Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C (2009) The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports Exerc 41(1):35–73PubMedCrossRefGoogle Scholar
  4. Bustamante-Ara N, Santiago C, Verde Z, Yvert T, Gomez-Gallego F, Rodriguez-Romo G, Gonzalez-Gil P, Serra-Rexach JA, Ruiz JR, Lucia A (2010) ACE and ACTN3 genes and muscle phenotypes in nonagenarians. Int J Sports Med 31(4):221–224. doi:10.1055/s-0030-1247529 PubMedCrossRefGoogle Scholar
  5. Collin C, Wade DT, Davies S, Horne V (1988) The Barthel ADL Index: a reliability study. Int Disabil Stud 10(2):61–63PubMedCrossRefGoogle Scholar
  6. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS (2007) Replicating genotype-phenotype associations. Nature 447(7145):655–660. doi:10.1038/447655a PubMedCrossRefGoogle Scholar
  7. Charbonneau DE, Hanson ED, Ludlow AT, Delmonico MJ, Hurley BF, Roth SM (2008) ACE genotype and the muscle hypertrophic and strength responses to strength training. Med Sci Sports Exerc 40(4):677–683. doi:10.1249/MSS.0b013e318161eab9 PubMedCrossRefGoogle Scholar
  8. Daly RM, Ahlborg HG, Ringsberg K, Gardsell P, Sernbo I, Karlsson MK (2008) Association between changes in habitual physical activity and changes in bone density, muscle strength, and functional performance in elderly men and women. J Am Geriatr Soc 56(12):2252–2260. doi:10.1111/j.1532-5415.2008.02039.x PubMedCrossRefGoogle Scholar
  9. De Abajo S, Larriba R, Marquez S (2001) Validity and reliability of the Yale Physical Activity Survey in Spanish elderly. J Sports Med Phys Fitness 41(4):479–485PubMedGoogle Scholar
  10. Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, Carignan CR, Roth SM, Hurley BF (2007) Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol A Biol Sci Med Sci 62(2):206–212PubMedCrossRefGoogle Scholar
  11. Delmonico MJ, Zmuda JM, Taylor BC, Cauley JA, Harris TB, Manini TM, Schwartz A, Li R, Roth SM, Hurley BF, Bauer DC, Ferrell RE, Newman AB (2008) Association of the ACTN3 genotype and physical functioning with age in older adults. J Gerontol A Biol Sci Med Sci 63(11):1227–1234PubMedCrossRefGoogle Scholar
  12. Dipietro L, Caspersen CJ, Ostfeld AM, Nadel ER (1993) A survey for assessing physical activity among older adults. Med Sci Sports Exerc 25(5):628–642PubMedGoogle Scholar
  13. Fiuza-Luces C, Ruiz JR, Rodriguez-Romo G, Santiago C, Gomez-Gallego F, Yvert T, Cano-Nieto A, Garatachea N, Moran M, Lucia A (2011) Are ‘endurance’ alleles ‘survival’ alleles? Insights from the ACTN3 R577X polymorphism. PLoS One 6(3):e17558. doi:10.1371/journal.pone.0017558 PubMedCrossRefGoogle Scholar
  14. Flueck M, Eyeang-Bekale N, Heraud A, Girard A, Gimpl M, Seynnes OR, Rittweger J, Niebauer J, Mueller E, Narici M (2011) Load-sensitive adhesion factor expression in the elderly with skiing: relation to fiber type and muscle strength. Scand J Med Sci Sports 21(Suppl 1):29–38. doi:10.1111/j.1600-0838.2011.01339.x PubMedCrossRefGoogle Scholar
  15. Flueck M, Vaughan D, Westerblad H (2010) Linking genes with exercise: where is the cut-off? Eur J Appl Physiol 110(6):1095–1098. doi:10.1007/s00421-010-1662-9 PubMedCrossRefGoogle Scholar
  16. Frederiksen H, Bathum L, Worm C, Christensen K, Puggaard L (2003a) ACE genotype and physical training effects: a randomized study among elderly Danes. Aging Clin Exp Res 15(4):284–291PubMedGoogle Scholar
  17. Frederiksen H, Gaist D, Bathum L, Andersen K, McGue M, Vaupel JW, Christensen K (2003b) Angiotensin I-converting enzyme (ACE) gene polymorphism in relation to physical performance, cognition and survival—a follow-up study of elderly Danish twins. Ann Epidemiol 13(1):57–65PubMedCrossRefGoogle Scholar
  18. Garatachea N, Lucia A (2011) Genes and the ageing muscle: a review on genetic association studies. Age. doi:10.1007/s11357-011-9327-0
  19. Garatachea N, Molinero O, Martinez-Garcia R, Jimenez-Jimenez R, Gonzalez-Gallego J, Marquez S (2009) Feelings of well being in elderly people: relationship to physical activity and physical function. Arch Gerontol Geriatr 48(3):306–312. doi:10.1016/j.archger.2008.02.010 PubMedCrossRefGoogle Scholar
  20. Giaccaglia V, Nicklas B, Kritchevsky S, Mychalecky J, Messier S, Bleecker E, Pahor M (2008) Interaction between angiotensin converting enzyme insertion/deletion genotype and exercise training on knee extensor strength in older individuals. Int J Sports Med 29(1):40–44. doi:10.1055/s-2007-964842 Google Scholar
  21. Gomez-Gallego F, Santiago C, Gonzalez-Freire M, Muniesa CA, Fernandez Del Valle M, Perez M, Foster C, Lucia A (2009) Endurance performance: genes or gene combinations? Int J Sports Med 30(1):66–72. doi:10.1055/s-2008-1038677 PubMedCrossRefGoogle Scholar
  22. Gordi T, Khamis H (2004) Simple solution to a common statistical problem: interpreting multiple tests. Clin Ther 26(5):780–786PubMedCrossRefGoogle Scholar
  23. Gordon SE, Davis BS, Carlson CJ, Booth FW (2001) ANG II is required for optimal overload-induced skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 280(1):E150–E159PubMedGoogle Scholar
  24. Gotshalk LA, Volek JS, Staron RS, Denegar CR, Hagerman FC, Kraemer WJ (2002) Creatine supplementation improves muscular performance in older men. Med Sci Sports Exerc 34(3):537–543PubMedCrossRefGoogle Scholar
  25. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70Google Scholar
  26. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52(1):80–85PubMedCrossRefGoogle Scholar
  27. Jones A, Woods DR (2003) Skeletal muscle RAS and exercise performance. Int J Biochem Cell Biol 35(6):855–866PubMedCrossRefGoogle Scholar
  28. Jones CJ, Rikli RE, Beam WC (1999) A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport 70(2):113–119PubMedGoogle Scholar
  29. Judson RN, Wackerhage H, Hughes A, Mavroeidi A, Barr RJ, Macdonald HM, Ratkevicius A, Reid DM, Hocking LJ (2011) The functional ACTN3 577X variant increases the risk of falling in older females: results from two large independent cohort studies. J Gerontol A Biol Sci Med Sci 66(1):130–135. doi:10.1093/gerona/glq189 PubMedCrossRefGoogle Scholar
  30. Kritchevsky SB, Nicklas BJ, Visser M, Simonsick EM, Newman AB, Harris TB, Lange EM, Penninx BW, Goodpaster BH, Satterfield S, Colbert LH, Rubin SM, Pahor M (2005) Angiotensin-converting enzyme insertion/deletion genotype, exercise, and physical decline. JAMA 294(6):691–698. doi:10.1001/jama.294.6.691 PubMedCrossRefGoogle Scholar
  31. Lima RM, Leite TK, Pereira RW, Rabelo HT, Roth SM, Oliveira RJ (2011) ACE and ACTN3 genotypes in older women: muscular phenotypes. Int J Sports Med 32(1):66–72. doi:10.1055/s-0030-1267229 PubMedCrossRefGoogle Scholar
  32. Lindpaintner K, Pfeffer MA, Kreutz R, Stampfer MJ, Grodstein F, LaMotte F, Buring J, Hennekens CH (1995) A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 332(11):706–711. doi:10.1056/NEJM199503163321103 PubMedCrossRefGoogle Scholar
  33. Liu CJ, Latham N (2011) Can progressive resistance strength training reduce physical disability in older adults? A meta-analysis study. Disabil Rehabil 33(2):87–97. doi:10.3109/09638288.2010.487145 PubMedCrossRefGoogle Scholar
  34. MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, Lemckert FA, Kee AJ, Edwards MR, Berman Y, Hardeman EC, Gunning PW, Easteal S, Yang N, North KN (2007) Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet 39(10):1261–1265. doi:10.1038/ng2122 PubMedCrossRefGoogle Scholar
  35. Mahoney FI, Barthel DW (1965) Functional evaluation: The Barthel Index. Md State Med J 14:61–65PubMedGoogle Scholar
  36. McCauley T, Mastana SS, Folland JP (2010) ACE I/D and ACTN3 R/X polymorphisms and muscle function and muscularity of older Caucasian men. Eur J Appl Physiol 109(2):269–277. doi:10.1007/s00421-009-1340-y PubMedCrossRefGoogle Scholar
  37. North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH (1999) A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet 21(4):353–354. doi:10.1038/7675 PubMedCrossRefGoogle Scholar
  38. Pahor M, Kritchevsky S (1998) Research hypotheses on muscle wasting, aging, loss of function and disability. J Nutr Health Aging 2(2):97–100PubMedGoogle Scholar
  39. Raue U, Slivka D, Minchev K, Trappe S (2009) Improvements in whole muscle and myocellular function are limited with high-intensity resistance training in octogenarian women. J Appl Physiol 106(5):1611–1617. doi:10.1152/japplphysiol.91587.2008 PubMedCrossRefGoogle Scholar
  40. Rexach JA, Ruiz JR, Bustamante-Ara N, Villaran MH, Gil PG, Sanz Ibanez MJ, Sanz NB, Santamaria VO, Sanz NG, Prada AB, Gallardo C, Romo GR, Lucia A (2009) Health enhancing strength training in nonagenarians (STRONG): rationale, design and methods. BMC Public Health 9:152. doi:10.1186/1471-2458-9-152 CrossRefGoogle Scholar
  41. Rikli RE, Jones CJ (1999) Development and validation of a functional fitness test for community residing older adults. J Aging Phys Activ 7(2):129–161Google Scholar
  42. Rodriguez-Romo G, Ruiz JR, Santiago C, Fiuza-Luces C, Gonzalez-Freire M, Gomez-Gallego F, Moran M, Lucia A (2010) Does the ACE I/D polymorphism, alone or in combination with the ACTN3 R577X polymorphism, influence muscle power phenotypes in young, non-athletic adults? Eur J Appl Physiol 110(6):1099–1106. doi:10.1007/s00421-010-1608-2 PubMedCrossRefGoogle Scholar
  43. Ruiz-Ruiz J, Mesa JL, Gutierrez A, Castillo MJ (2002) Hand size influences optimal grip span in women but not in men. J Hand Surg Am 27(5):897–901PubMedCrossRefGoogle Scholar
  44. San Juan AF, Gomez-Gallego F, Canete S, Santiago C, Perez M, Lucia A (2006) Does complete deficiency of muscle alpha actinin 3 alter functional capacity in elderly women? A preliminary report. Br J Sports Med 40(1):e1. doi:40/1/e1[pii]10.1136/bjsm.2005.019539 PubMedCrossRefGoogle Scholar
  45. Santiago C, Rodriguez-Romo G, Gomez-Gallego F, Gonzalez-Freire M, Yvert T, Verde Z, Naclerio F, Altmae S, Esteve-Lanao J, Ruiz JR, Lucia A (2010) Is there an association between ACTN3 R577X polymorphism and muscle power phenotypes in young, non-athletic adults? Scand J Med Sci Sports 20(5):771–778. doi:10.1111/j.1600-0838.2009.01017.x PubMedCrossRefGoogle Scholar
  46. Seto JT, Chan S, Turner N, Macarthur DG, Raftery JM, Berman YD, Quinlan KG, Cooney GJ, Head S, Yang N, North KN (2011) The effect of alpha-actinin-3 deficiency on muscle aging. Exp Gerontol 46(4):292–302. doi:10.1016/j.exger.2010.11.006 PubMedCrossRefGoogle Scholar
  47. Shin H, Panton LB, Dutton GR, Ilich JZ (2011) Relationship of physical performance with body composition and bone mineral density in individuals over 60 years of age: a systematic review. J Aging Res 2011:191896. doi:10.4061/2011/191896 PubMedGoogle Scholar
  48. Vigano A, Trutschnigg B, Kilgour RD, Hamel N, Hornby L, Lucar E, Foulkes W, Tremblay ML, Morais JA (2009) Relationship between angiotensin-converting enzyme gene polymorphism and body composition, functional performance, and blood biomarkers in advanced cancer patients. Clin Cancer Res 15(7):2442–2447. doi:10.1158/1078-0432.CCR-08-1720 PubMedCrossRefGoogle Scholar
  49. Walsh S, Liu D, Metter EJ, Ferrucci L, Roth SM (2008) ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. J Appl Physiol 105(5):1486–1491. doi:10.1152/japplphysiol.90856.2008 PubMedCrossRefGoogle Scholar
  50. Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, North K (2003) ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet 73(3):627–631. doi:10.1086/377590S0002-9297(07)62024-2[pii] PubMedCrossRefGoogle Scholar
  51. Yoshihara A, Tobina T, Yamaga T, Ayabe M, Yoshitake Y, Kimura Y, Shimada M, Nishimuta M, Nakagawa N, Ohashi M, Hanada N, Tanaka H, Kiyonaga A, Miyazaki H (2009) Physical function is weakly associated with angiotensin-converting enzyme gene I/D polymorphism in elderly Japanese subjects. Gerontology 55(4):387–392. doi:10.1159/000222429 PubMedCrossRefGoogle Scholar
  52. Zempo H, Tanabe K, Murakami H, Iemitsu M, Maeda S, Kuno S (2010) ACTN3 polymorphism affects thigh muscle area. Int J Sports Med 31(2):138–142. doi:10.1055/s-0029-1242808 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nuria Garatachea
    • 1
  • Carmen Fiuza-Luces
    • 2
  • Gema Torres-Luque
    • 3
  • Thomas Yvert
    • 2
  • Catalina Santiago
    • 2
  • Félix Gómez-Gallego
    • 2
  • Jonatan R. Ruiz
    • 4
    • 5
  • Alejandro Lucia
    • 2
  1. 1.Faculty of Health and Sport Science, Department of Physiotherapy and NursingUniversity of ZaragozaHuescaSpain
  2. 2.European University of MadridMadridSpain
  3. 3.Faculty of Humanities and Education SciencesUniversity of JaénJaénSpain
  4. 4.Department of Physical Education and Sport, School of Physical Activity and Sport SciencesUniversity of GranadaGranadaSpain
  5. 5.Unit for Preventive Nutrition, Department of Biosciences and Nutrition at NOVUMKarolinska InstitutetStockholmSweden

Personalised recommendations