European Journal of Applied Physiology

, Volume 111, Issue 10, pp 2535–2545 | Cite as

Effect of different resistance-training regimens on the WNT-signaling pathway

  • Marcelo Larciprete Leal
  • Leonardo Lamas
  • Marcelo Saldanha Aoki
  • Carlos Ugrinowitsch
  • Marcela Sorelli Carneiro Ramos
  • Valmor Tricoli
  • Anselmo Sigari MoriscotEmail author
Original Article


The purpose of the present study was to evaluate the effects of 8 weeks of strength and power training on the expression of genes related to the canonical WNT pathway and β-catenin protein levels in physically active men. Twenty-five subjects (27.4 ± 4.6 years) were balanced based on their relative maximum strength in the squat exercise (squat 1RM/body mass) and randomly assigned to strength training (ST) (n = 10), power training (PT) (n = 10), and control (C) (n = 5) groups. The ST and the PT groups performed high and low intensity squats, respectively, thrice a week, for 8 weeks. Muscle biopsies from the vastus lateralis muscle were collected before and after the training period. Relative strength and power increased similarly in both ST and PT groups (P < 0.001). Fiber cross-sectional area also increased similarly in both ST and PT groups. Gene expression and β-catenin protein expression levels were assessed by real-time PCR and Western blot. Certain genes were up-regulated in the ST group (WNT1: 6.4-fold, P < 0.0001; SFRP1: 3.3-fold, P < 0.0001 and LEF1: 7.3-fold, P < 0.0001) and also in the PT group (WNT1: 24.9-fold, P < 0.0001; SFRP1: 2.7-fold, P < 0.0001; LEF1: 34.1-fold, P < 0.0001 and Cyclin D1: 7.7-fold, P < 0.001). In addition, the expression of key WNT pathway genes was substantially more responsive to PT than to ST (WNT1: P < 0.0001; LEF1: P < 0.0001 and Cyclin D1: P < 0.001). Finally, the total β-catenin protein content increased only in the PT group (P < 0.05). Our data indicate that a PT regimen triggers greater responses in key elements of the WNT pathway.


Skeletal muscle Gene expression Strength Power 



The authors express their gratitude to Antonio Garcia Soares for excellent technical assistance. This work was supported by FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo, Brazil), Grants: 08/58415-3, 07/52288-7, 06/00302-3 and 06/61523-7.


  1. Alao JP (2007) The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 6:24. doi: 10.1186/1476-4598-6-24 PubMedCrossRefGoogle Scholar
  2. Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I (2002) Axin-mediated cki phosphorylation of beta-catenin at ser 45: a molecular switch for the WNT pathway. Genes Dev 16(9):1066–1076PubMedCrossRefGoogle Scholar
  3. Angelis E, Garcia A, Chan SS, Schenke-Layland K, Ren S, Goodfellow SJ, Jordan MC, Roos KP, White RJ, MacLellan WR (2008) A cyclin D2–Rb pathway regulates cardiac myocyte size and RNA polymerase iii after biomechanical stress in adult myocardium. Circ Res 102(10):1222–1229PubMedCrossRefGoogle Scholar
  4. Armstrong DD, Esser KA (2005) WNT/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol 289(4):C853–C859CrossRefGoogle Scholar
  5. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from drosophila functions as a wingless receptor. Nature 382(6588):225–230PubMedCrossRefGoogle Scholar
  6. Bosco C, Belli A, Astrua M, Tihanyi J, Pozzo R, Kellis S, Tsarpela O, Foti C, Manno R, Tranquilli C (1995) A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol 70:379–386CrossRefGoogle Scholar
  7. Brown LE, Weir JP (2001) ASEP procedures recommendation I: accurate assessment of muscular strength and power. JEPonline 4(3):1–21Google Scholar
  8. Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5(8):e12033PubMedCrossRefGoogle Scholar
  9. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39PubMedCrossRefGoogle Scholar
  10. Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88(1–2):50–60PubMedCrossRefGoogle Scholar
  11. Chapman DW, Newton M, McGuigan M, Nosaka K (2008) Effect of lengthening contraction velocity on muscle damage of the elbow flexors. Med Sci Sports Exerc 40(5):926–933PubMedCrossRefGoogle Scholar
  12. Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37(9):737–763PubMedCrossRefGoogle Scholar
  13. Farthing JP, Chilibeck PD (2003) The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol 89(6):578–586PubMedCrossRefGoogle Scholar
  14. Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679CrossRefGoogle Scholar
  15. Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM (2002) Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. PNAS USA 99(3):1182–1187PubMedCrossRefGoogle Scholar
  16. Glass DJ (2003) Molecular mechanisms modulating muscle mass. Trends Mol Med 9(8):344–350PubMedCrossRefGoogle Scholar
  17. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Intl J Biochem Cell Biol 37(10):1974–1984CrossRefGoogle Scholar
  18. Hesketh JE, Whitelaw PF (1992) The role of cellular oncogenes in myogenesis and muscle cell hypertrophy. Intl J Biochem 24(2):193–203CrossRefGoogle Scholar
  19. Izumo S, Nadal-Ginard B, Mahdavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. PNAS USA 85(2):339–343PubMedCrossRefGoogle Scholar
  20. Kawano Y, Kypta R (2003) Secreted antagonists of the WNT signalling pathway. J Cell Sci 116(Pt 13):2627–2634PubMedCrossRefGoogle Scholar
  21. Lamas L, Aoki MS, Ugrinowitsch C, Campos GE, Regazzini M, Moriscot AS, Tricoli V (2010) Expression of genes related to muscle plasticity after strength and power training regimens. Scand J Med Sci Sports 20(2):216–225PubMedCrossRefGoogle Scholar
  22. Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP (2006) Akt signalling through GSK-3Beta, mTOR and FOXO1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576(Pt 3):923–933PubMedCrossRefGoogle Scholar
  23. Li L, Yuan H, Weaver CD, Mao J, Farr GH 3rd, Sussman DJ, Jonkers J, Kimelman D, Wu D (1999) Axin and FRAT-1 interact with DVL and GSK, bridging DVL to GSK in WNT-mediated regulation of LEF-1. EMBO J 18(15):4233–4240PubMedCrossRefGoogle Scholar
  24. Logan CY, Nusse R (2004) The WNT signaling pathway in development and disease. Ann Rev Cell Dev Biol 20:781–810CrossRefGoogle Scholar
  25. Malisoux L, Francaux M, Nielens H, Theisen D (2006) Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol 100(3):771–779PubMedCrossRefGoogle Scholar
  26. Montagne J (2000) Genetic and molecular mechanisms of cell size control. Mol Cell Biol Res Commun 4(4):195–202PubMedCrossRefGoogle Scholar
  27. Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13(4):157–162PubMedCrossRefGoogle Scholar
  28. Morgan JE, Partridge TA (2003) Muscle satellite cells. Intl J Biochem Cell Biol 35(8):1151–1156CrossRefGoogle Scholar
  29. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of Beta-catenin-TCF signaling in colon cancer by mutations in Beta-catenin or APC. Science (New York, NY) 275(5307):1787–1790CrossRefGoogle Scholar
  30. Moss BM, Refsnes PE, Abildgaard A, Nicolaysen K, Jensen J (1997) Effects of maximal effort strength training with different loads on dynamic strength, cross-sectional area, load-power and load-velocity relationships. Eur J Appl Physiol Occup Physiol 75(3):193–199PubMedCrossRefGoogle Scholar
  31. Novak A, Dedhar S (1999) Signaling through Beta-catenin and LEF/TCF. Cell Mol Life Sci 56(5–6):523–537PubMedCrossRefGoogle Scholar
  32. O’Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587(Pt 14):3691–3701. doi: 10.1113/jphysiol.2009.173609 PubMedCrossRefGoogle Scholar
  33. Peifer M, Polakis P (2000) WNT signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science (New York, NY) 287(5458):1606–1609CrossRefGoogle Scholar
  34. Piedra ME, Delgado MD, Ros MA, Leon J (2002) C-myc overexpression increases cell size and impairs cartilage differentiation during chick limb development. Cell Growth Differ 13(4):185–193PubMedGoogle Scholar
  35. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates WNTsignalling in mice. Nature 407(6803):535–538PubMedCrossRefGoogle Scholar
  36. Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ, Triplett NT (2009) American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708CrossRefGoogle Scholar
  37. Shapiro L (1997) The multi-talented Beta-catenin makes its first appearance. Structure 5(10):1265–1268PubMedCrossRefGoogle Scholar
  38. Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM (2005) Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol 98(5):1768–1776PubMedCrossRefGoogle Scholar
  39. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the Beta-catenin/LEF-1 pathway. PNAS USA 96(10):5522–5527PubMedCrossRefGoogle Scholar
  40. Sorensen B, Jones JF, Vernon SD, Rajeevan MS (2009) Transcriptional control of complement activation in an exercise model of chronic fatigue syndrome. Mol Med 15(1–2):34–42PubMedGoogle Scholar
  41. Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA (1990) Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol Occup Physiol 60(1):71–79PubMedCrossRefGoogle Scholar
  42. Steelman CA, Recknor JC, Nettleton D, Reecy JM (2006) Transcriptional profiling of myostatin-knockout mice implicates WNT signaling in postnatal skeletal muscle growth and hypertrophy. Faseb J 20(3):580–582PubMedGoogle Scholar
  43. Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y, Adachi S, Ohwada S, Morishita Y, Shibuya H, Akiyama T (2000) Inhibition of WNT signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev 14(14):1741–1749PubMedGoogle Scholar
  44. Toigo M, Boutellier U (2006) New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 97(6):643–663PubMedCrossRefGoogle Scholar
  45. Ugrinowitsch C, Fellingham GW, Ricard MD (2004) Limitations of ordinary least squares models in analyzing repeated measures data. Med Sci Sports Exerc 36(12):2144–2148PubMedCrossRefGoogle Scholar
  46. Welle S, Bhatt K, Pinkert CA, Tawil R, Thornton CA (2007) Muscle growth after postdevelopmental myostatin gene knockout. Am J Physiol 292(4):E985–E991Google Scholar
  47. Williams (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. New Eng J Med 351(10):1030–1031PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Marcelo Larciprete Leal
    • 1
  • Leonardo Lamas
    • 2
  • Marcelo Saldanha Aoki
    • 3
  • Carlos Ugrinowitsch
    • 2
  • Marcela Sorelli Carneiro Ramos
    • 1
  • Valmor Tricoli
    • 2
  • Anselmo Sigari Moriscot
    • 1
    Email author
  1. 1.Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
  2. 2.School of Physical Education and SportUniversity of Sao PauloSao PauloBrazil
  3. 3.School of Arts, Sciences and HumanitiesUniversity of Sao PauloSao PauloBrazil

Personalised recommendations