Advertisement

European Journal of Applied Physiology

, Volume 111, Issue 9, pp 2155–2162 | Cite as

Three-month bilateral hopping intervention is ineffective in initiating bone biomarker response in healthy elderly men

  • Timo RantalainenEmail author
  • M. Hoffrén
  • V. Linnamo
  • A. Heinonen
  • P. V. Komi
  • J. Avela
  • B. C. Nindl
Original Article

Abstract

In animal studies, bone adaptation has been initiated successfully without the transient force spike associated with high impact exercises. Consequently, a 12-week bilateral hopping on the balls of the feet intervention was conducted. 25 elderly men (age 72(SD4) years, height 171(6) cm, weight 75(9) kg) were randomly assigned into exercise and control groups. Ten subjects in each group completed the study. Carboxyterminal propeptide of type I collagen (CICP), bone-specific alkaline phosphatase (bALP) and carboxyterminal telopeptide of type I collagen (CTx) were measured from venous blood samples at baseline, at 2 weeks and at the end of the intervention. Maximal ground reaction force (GRF), osteogenic index (OI) and jump height (JH) were determined from bilateral hopping test and balance was assessed with velocity of center of pressure (COPvelocity) while standing on the preferred leg with eyes open. The intervention consisted of 5–7 sets of 10 s timed bilateral hopping exercise at 75–90% intensity three times/week. There was no significant group × time interaction for GRF, OI and JH (P = 0.065). GRF (11% change from baseline vs. 4%), OI (15 vs. 6%) and COPvelocity (−10 vs. −1%) were not influenced by the intervention (P > 0.170), while the control group improved JH (P = 0.031) (2 vs. 18%). For the biomarkers, no effect was observed in MANOVA (P = 0.536) or in univariate analyses (P = 0.082 to P = 0.820) (CICP −2 vs. −3%, CTx 8 vs. −12%, bALP 0 vs. −3.7%). Allowing transient impact force spikes may be necessary to initiate a bone response in elderly men as the intervention was ineffective.

Keywords

Randomized controlled study RCT Bone biochemical markers Exercise Impact 

Notes

Acknowledgments

The study was funded by the European regional development fund, the Academy of Finland and by the TBGS National Graduate School of Musculoskeletal Disorders and Biomaterials. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or reflecting the views of the Army or the Department of Defense.

References

  1. Ahola R, Korpelainen R, Vainionpää A, Jamsa T (2010) Daily impact score in long-term acceleration measurements of exercise. J Biomech 43:1960–1964. doi: 10.1016/j.jbiomech.2010.03.021 PubMedCrossRefGoogle Scholar
  2. Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW (1998) Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13:1805–1813PubMedCrossRefGoogle Scholar
  3. Belli A, Kyröläinen H, Komi PV (2002) Moment and power of lower limb joints in running. Int J Sports Med 23:136–141. doi: 10.1055/s-2002-20136 PubMedCrossRefGoogle Scholar
  4. Carter ND, Kannus P, Khan KM (2001) Exercise in the prevention of falls in older people: a systematic literature review examining the rationale and the evidence. Sports Med 31:427–438PubMedCrossRefGoogle Scholar
  5. Christenson RH (1997) Biochemical markers of bone metabolism: an overview. Clin Biochem 30:573–593PubMedCrossRefGoogle Scholar
  6. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767PubMedCrossRefGoogle Scholar
  7. Eliakim A, Raisz LG, Brasel JA, Cooper DM (1997) Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J Bone Miner Res 12:1708–1713. doi: 10.1359/jbmr.1997.12.10.1708 PubMedCrossRefGoogle Scholar
  8. Erickson CR, Vukovich MD (2010) The osteogenic index and changes in bone markers during a jump-training program: a pilot study. Med Sci Sports Exerc 42:1485–1492. doi: 10.1249/MSS.0b013e3181d0fa7a PubMedCrossRefGoogle Scholar
  9. Evans RK, Antczak AJ, Lester M, Yanovich R, Israeli E, Moran DS (2008) Effects of a 4-month recruit training program on markers of bone metabolism. Med Sci Sports Exerc 40:S660–S670. doi: 10.1249/MSS.0b013e318189422b PubMedCrossRefGoogle Scholar
  10. Ferretti JL, Capozza RF, Cointry GR et al (1998) Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22:683–690PubMedCrossRefGoogle Scholar
  11. Ferretti JL, Cointry GR, Capozza RF, Frost HM (2003) Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Ageing Dev 124:269–279PubMedCrossRefGoogle Scholar
  12. Fukashiro S, Komi PV (1987) Joint moment and mechanical power flow of the lower limb during vertical jump. Int J Sports Med 8(Suppl 1):15–21PubMedCrossRefGoogle Scholar
  13. Heinonen A, Kannus P, Sievänen H et al (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348:1343–1347PubMedCrossRefGoogle Scholar
  14. Holst JJ, Hartmann B, Gottschalck IB, Jeppesen PB, Miholic J, Henriksen DB (2007) Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate. Scand J Gastroenterol 42:814–820. doi: 10.1080/00365520601137272 PubMedCrossRefGoogle Scholar
  15. Ishikawa M, Niemelä E, Komi PV (2005) Interaction between fascicle and tendinous tissues in short-contact stretch-shortening cycle exercise with varying eccentric intensities. J Appl Physiol 99:217–223. doi: 10.1152/japplphysiol.01352.2004 PubMedCrossRefGoogle Scholar
  16. Järvinen TL, Kannus P, Sievänen H, Jolma P, Heinonen A, Järvinen M (1998) Randomized controlled study of effects of sudden impact loading on rat femur. J Bone Miner Res 13:1475–1482. doi: 10.1359/jbmr.1998.13.9.1475 PubMedCrossRefGoogle Scholar
  17. Kato T, Terashima T, Yamashita T, Hatanaka Y, Honda A, Umemura Y (2006) Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol 100:839–843. doi: 10.1152/japplphysiol.00666.2005 PubMedCrossRefGoogle Scholar
  18. Kohrt WM (2001) Aging and the osteogenic response to mechanical loading. Int J Sport Nutr Exerc Metab 11(Suppl):137–142Google Scholar
  19. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR, American College of Sports Medicine (2004) American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc 36:1985–1996Google Scholar
  20. Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res 16:1937–1947PubMedCrossRefGoogle Scholar
  21. Lester ME, Urso ML, Evans RK et al (2009) Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training. Bone 45:768–776. doi: 10.1016/j.bone.2009.06.001 PubMedCrossRefGoogle Scholar
  22. Markovic G (2007) Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med 41:349–355 (discussion 355). doi: 10.1136/bjsm.2007.035113 Google Scholar
  23. Melton LJ 3rd, Riggs BL, Achenbach SJ et al (2006) Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 21:1847–1855. doi: 10.1359/jbmr.060908 PubMedCrossRefGoogle Scholar
  24. Menkes A, Mazel S, Redmond RA et al (1993) Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men. J Appl Physiol 74:2478–2484PubMedGoogle Scholar
  25. Nikander R, Sievänen H, Uusi-Rasi K, Heinonen A, Kannus P (2006) Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone 39:886–894. doi: 10.1016/j.bone.2006.04.005 PubMedCrossRefGoogle Scholar
  26. Nilsson J, Thorstensson A (1989) Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand 136:217–227PubMedCrossRefGoogle Scholar
  27. Nummela A, Rusko H, Mero A (1994) EMG activities and ground reaction forces during fatigued and nonfatigued sprinting. Med Sci Sports Exerc 26:605–609PubMedGoogle Scholar
  28. Ortiz-Luna G, Garcia-Hernandez P, Tamayo-Orozco JA (2009) Treatment options for osteoporosis, decision making criteria. Salud Publica Mex 51(Suppl 1):S114–S125PubMedCrossRefGoogle Scholar
  29. Perttunen JO, Kyröläinen H, Komi PV, Heinonen A (2000) Biomechanical loading in the triple jump. J Sports Sci 18:363–370PubMedCrossRefGoogle Scholar
  30. Rantalainen T, Sievanen H, Linnamo V et al (2009a) Bone rigidity to neuromuscular performance ratio in young and elderly men. Bone 45:956–963. doi: 10.1016/j.bone.2009.07.014 PubMedCrossRefGoogle Scholar
  31. Rantalainen T, Heinonen A, Linnamo V, Komi PV, Takala TES, Kainulainen H (2009b) Short-term bone biochemical response to a single bout of high-impact exercise. J Sports Sci Med 8:553–559Google Scholar
  32. Rantalainen T, Linnamo V, Komi PV, Selanne H, Heinonen A (2010) Seventy-year-old habitual volleyball players have larger tibial cross-sectional area and may be differentiated from their age-matched peers by the osteogenic index in dynamic performance. Eur J Appl Physiol 109:651–658. doi: 10.1007/s00421-010-1400-3 PubMedCrossRefGoogle Scholar
  33. Rittweger J, Felsenberg D (2009) Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up. Bone 44:214–224. doi: 10.1016/j.bone.2008.10.044 PubMedCrossRefGoogle Scholar
  34. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402PubMedGoogle Scholar
  35. Shaw JM, Snow CM (1998) Weighted vest exercise improves indices of fall risk in older women. J Gerontol A Biol Sci Med Sci 53:M53–M58PubMedCrossRefGoogle Scholar
  36. Shibata Y, Ohsawa I, Watanabe T, Miura T, Sato Y (2003) Effects of physical training on bone mineral density and bone metabolism. J Physiol Anthropol Appl Human Sci 22:203–208PubMedCrossRefGoogle Scholar
  37. Stacoff A, Kaelin X, Sutessi E (1987) The impact in landing after a volleyball block. In: Hollander AP, Huijing PA, van Ingen Schenau GJ, de Groot G (eds) Biomechanics XI-B. Free University Press, AmsterdamGoogle Scholar
  38. Stevens JA, Olson S (2000) Reducing falls and resulting hip fractures among older women. MMWR Recomm Rep 49:3–12PubMedGoogle Scholar
  39. Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407PubMedCrossRefGoogle Scholar
  40. Turner CH, Robling AG (2003) Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 31:45–50PubMedCrossRefGoogle Scholar
  41. Umemura Y, Sogo N, Honda A (2002) Effects of intervals between jumps or bouts on osteogenic response to loading. J Appl Physiol 93:1345–1348. doi: 10.1152/japplphysiol.00358.2002 PubMedGoogle Scholar
  42. Vainionpää A, Korpelainen R, Vihriälä E, Rinta-Paavola A, Leppäluoto J, Jämsä T (2006) Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int 17:455–463. doi: 10.1007/s00198-005-0005-x PubMedCrossRefGoogle Scholar
  43. Vainionpää A, Korpelainen R, Kaikkonen H, Knip M, Leppäluoto J, Jämsä T (2007) Effect of impact exercise on physical performance and cardiovascular risk factors. Med Sci Sports Exerc 39:756–763. doi: 10.1249/mss.0b013e318031c039 PubMedCrossRefGoogle Scholar
  44. Vainionpää A, Korpelainen R, Vaananen HK, Haapalahti J, Jamsa T, Leppaluoto J (2009) Effect of impact exercise on bone metabolism. Osteoporos Int 20:1725–1733. doi: 10.1007/s00198-009-0881-6 PubMedCrossRefGoogle Scholar
  45. von Stengel S, Kemmler W, Pintag R et al (2005) Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 99:181–188. doi: 10.1152/japplphysiol.01260.2004 PubMedCrossRefGoogle Scholar
  46. von Stengel S, Kemmler W, Kalender WA, Engelke K, Lauber D (2007) Differential effects of strength versus power training on bone mineral density in postmenopausal women: a 2-year longitudinal study. Br J Sports Med 41:649–655 (discussion 655). doi: 10.1136/bjsm.2006.033480 Google Scholar
  47. Wagner H, Melhus H, Gedeborg R, Pedersen NL, Michaelsson K (2009) Simply ask them about their balance–future fracture risk in a nationwide cohort study of twins. Am J Epidemiol 169:143–149. doi: 10.1093/aje/kwn379 PubMedCrossRefGoogle Scholar
  48. Whalen RT, Carter DR, Steele CR (1988) Influence of physical activity on the regulation of bone density. J Biomech 21:825–837PubMedCrossRefGoogle Scholar
  49. Yeow CH, Ng YH, Lee PV, Goh JC (2010) Tibial cartilage damage and deformation at peak displacement compression during simulated landing impact. Am J Sports Med 38:816–823. doi: 10.1177/0363546509350465 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Timo Rantalainen
    • 1
    • 2
    • 3
    Email author
  • M. Hoffrén
    • 1
  • V. Linnamo
    • 1
  • A. Heinonen
    • 3
  • P. V. Komi
    • 1
  • J. Avela
    • 1
  • B. C. Nindl
    • 1
    • 4
  1. 1.Neuromuscular Research Center, Department of Biology of Physical ActivityUniversity of JyväskyläJyväskyläFinland
  2. 2.Department of Mechanical EngineeringLappeenranta University of TechnologyLappeenrantaFinland
  3. 3.Department of Health SciencesUniversity of JyväskyläJyväskyläFinland
  4. 4.Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickUSA

Personalised recommendations