European Journal of Applied Physiology

, Volume 110, Issue 5, pp 1047–1055 | Cite as

Excessive skeletal muscle recruitment during strenuous exercise in McArdle patients

  • Dale E. Rae
  • Timothy D. Noakes
  • Alejandro F. San Juan
  • Margarita Pérez
  • Gisela Nogales-Gadea
  • Jonatan R. Ruiz
  • María Morán
  • Miguel A. Martín
  • Antoni L. Andreu
  • Joaquín Arenas
  • Alejandro Lucia
Original Article

Abstract

We compared the cardiorespiratory response and muscle recruitment [as determined by electromyography (EMG)] of 37 McArdle patients [19 males, 37.4 ± 2.8 years, body mass index (BMI): 25.1 ± 4.7 kg m−2] and 33 healthy controls (18 males, 36.4 ± 10.0 years, BMI: 25.7 ± 3.8 kg m−2) during cycle-ergometer exercise (an incremental test to exhaustion and a 12-min submaximal constant workload test). We obtained cardiorespiratory [oxygen uptake and heart rate (HR)] and EMG data (rectus femoris and vastus lateralis muscles). During the incremental test, the patients exhibited the expected hyperkinetic cardiovascular response shown by a marked increase in the slope of the HR:Power relationship (p < 0.001). Throughout the incremental test and at the point of fatigue, the patients produced significantly less power than the controls (peak power output: 67 ± 21 vs. 214 ± 56 watts respectively, p < 0.001), yet they demonstrated significantly higher levels of muscle activity for a given absolute power. During the constant workload test, patients displayed higher levels of EMG activity than the controls during the second half of the test, despite a lower power production (34 ± 13 vs. 94 ± 29 watts respectively, p < 0.001). In conclusion, since the McArdle patients required more motor unit recruitment for a given power output, our data suggest that the state of contractility of their muscles is reduced compared with healthy people. Excessive muscle recruitment for a given load could be one of the mechanisms explaining the exercise intolerance of these patients.

Keywords

EMG Metabolic disease (inherited) Muscle disease 

Notes

Acknowledgments

This work was supported by funding from the South African Medical Research Council, Discovery, the Fondo de Investigaciones Sanitarias (FIS, ref. # PI061183), and the Spanish Ministry of Education (EX-2007-1124).

References

  1. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332CrossRefPubMedGoogle Scholar
  2. Borg GA (1982) Psychophysical bases of physical exertion. Med Sci Sports Exerc 14:377–381PubMedGoogle Scholar
  3. Brooks GA, Butterfield GE, Wolfe RR, Groves BM, Mazzeo RS, Sutton JR, Wolfel EE, Reeves JT (1991) Increased dependence on blood glucose after acclimatization to 4, 300 m. J Appl Physiol 70:919–927CrossRefPubMedGoogle Scholar
  4. Chavarren J, Calbet JA (1999) Cycling efficiency and pedalling frequency in road cyclists. Eur J Appl Physiol Occup Physiol 80:555–563CrossRefPubMedGoogle Scholar
  5. Di Mauro S (2007) Muscle glycogenoses: an overview. Acta Myol 26:35–41PubMedGoogle Scholar
  6. Dirksen RT (2009) Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle. Appl Physiol Nutr Metab 34:389–395CrossRefPubMedGoogle Scholar
  7. Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495CrossRefPubMedGoogle Scholar
  8. Gonzalez-Freire M, Santiago C, Gomez-Gallego F, Perez M, Foster C, Arenas J, Lucia A (2009) Does the K153R variant of the myostatin gene influence the clinical presentation of women with McArdle disease? Neuromuscul Disord 19:220–222CrossRefPubMedGoogle Scholar
  9. Haller RG, Lewis SF, Cook JD, Blomqvist CG (1983) Hyperkinetic circulation during exercise in neuromuscular disease. Neurology 33:1283–1287PubMedGoogle Scholar
  10. Haller RG, Clausen T, Vissing J (1998) Reduced levels of skeletal muscle Na + K + -ATPase in McArdle disease. Neurology 50:37–40PubMedGoogle Scholar
  11. Haller RG, Wyrick P, Taivassalo T, Vissing J (2006) Aerobic conditioning: an effective therapy in McArdle’s disease. Ann Neurol 59:922–928CrossRefPubMedGoogle Scholar
  12. Jammes Y, Steinberg JG, Mambrini O, Brégeon F, Delliaux S (2005) Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. J Intern Med 257:299–310CrossRefPubMedGoogle Scholar
  13. Lewis SF, Haller RG (1986) The pathophysiology of McArdle’s disease: clues to regulation in exercise and fatigue. J Appl Physiol 61:391–401PubMedGoogle Scholar
  14. Lucia A, Nogales-Gadea G, Perez M, Martin MA, Andreu AL, Arenas J (2008) McArdle disease: what do neurologists need to know? Nat Clin Pract Neurol 4:568–577CrossRefPubMedGoogle Scholar
  15. Mate-Munoz JL, Moran M, Perez M, Chamorro-Vina C, Gomez-Gallego F, Santiago C, Chicharro L, Foster C, Nogales-Gadea G, Rubio JC, Andreu AL, Martin MA, Arenas J, Lucia A (2007) Favorable responses to acute and chronic exercise in McArdle patients. Clin J Sport Med 17:297–303CrossRefPubMedGoogle Scholar
  16. McArdle B (1951) Myopathy due to a defect in muscle glycogen breakdown. Clin Sci, pp 13–33Google Scholar
  17. Moritani T, Muro M (1987) Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. Eur J Appl Physiol Occup Physiol 56:260–265CrossRefPubMedGoogle Scholar
  18. Rubio JC, Garcia-Consuegra I, Nogales-Gadea G, Blazquez A, Cabello A, Lucia A, Andreu AL, Arenas J, Martin MA (2007) A proposed molecular diagnostic flowchart for myophosphorylase deficiency (McArdle disease) in blood samples from Spanish patients. Hum Mutat 28:203–204CrossRefPubMedGoogle Scholar
  19. Tsujino S, Shanske S, DiMauro S (1993) Molecular genetic heterogeneity of myophosphorylase deficiency (McArdle’s disease). N Engl J Med 329:241–245CrossRefPubMedGoogle Scholar
  20. Vissing J, Haller RG (2003a) A diagnostic cycle test for McArdle’s disease. Ann Neurol 54:539–542CrossRefPubMedGoogle Scholar
  21. Vissing J, Haller RG (2003b) The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med 349:2503–2509CrossRefPubMedGoogle Scholar
  22. Vissing J, Vissing SF, MacLean DA, Saltin B, Quistorff B, Haller RG (1998) Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies. J Clin Invest 101:1654–1660CrossRefPubMedGoogle Scholar
  23. Zange J, Grehl T, Disselhorst-Klug C, Rau G, Muller K, Schroder R, Tegenthoff M, Malin JP, Vorgerd M (2003) Breakdown of adenine nucleotide pool in fatiguing skeletal muscle in McArdle’s disease: a noninvasive 31P-MRS and EMG study. Muscle Nerve 27:728–736CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dale E. Rae
    • 1
  • Timothy D. Noakes
    • 1
  • Alejandro F. San Juan
    • 2
  • Margarita Pérez
    • 2
  • Gisela Nogales-Gadea
    • 3
    • 4
  • Jonatan R. Ruiz
    • 5
  • María Morán
    • 4
    • 6
  • Miguel A. Martín
    • 4
    • 6
  • Antoni L. Andreu
    • 3
    • 4
  • Joaquín Arenas
    • 4
    • 6
  • Alejandro Lucia
    • 2
  1. 1.UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
  2. 2.Universidad Europea de Madrid, Villaviciosa de OdónMadridSpain
  3. 3.Hospital Valle de HebrónBarcelonaSpain
  4. 4.CIBER de Enfermedades RarasValenciaSpain
  5. 5.Department of Biosciences and Nutrition at NovumKarolinska Institutet, Unit for Preventive NutritionHuddingeSweden
  6. 6.Hospital 12 de OctubreMadridSpain

Personalised recommendations