European Journal of Applied Physiology

, Volume 109, Issue 2, pp 201–211 | Cite as

Low vagal tone is associated with impaired post stress recovery of cardiovascular, endocrine, and immune markers

  • Cora Stefanie Weber
  • Julian F. Thayer
  • Miriam Rudat
  • Petra H. Wirtz
  • Frank Zimmermann-Viehoff
  • Alexander Thomas
  • Frank H. Perschel
  • Petra C. Arck
  • Hans C. Deter
Original Article


Reduced heart rate variability (HRV) and delayed blood pressure recovery are associated with increased cardiovascular risk. Besides this evident link, the vagus is thought to play an inhibitory role in the regulation of other allostatic systems, including inflammation and the hypothalamic–pituitary–adrenal (HPA) axis. However, human evidence is scarce. To further explore these associations and with special regard to the postulated mediating role of the vagus, we hypothesised that subjects with low vagal tone as indexed by reduced resting HRV would show impaired post-stress recovery of cardiovascular, endocrine and immune system markers involved in cardiovascular pathology. 44 healthy men underwent a standardised mental stress test. Besides continuous measurement of systolic and diastolic blood pressure (SBP, DBP), heart rate (HR), and HRV serum cortisol, tumour necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) were measured before, after, 20, and 60 min after stress. Low versus high HRV groups was defined by median split on resting HRV (RMSSD). The task elicited significant time effects for SBP, DBP, HR, HRV, cortisol, and TNF-alpha. Subjects with low baseline HRV showed almost no modulation of HRV coupled with overall reduced HRV levels, and impaired recovery of DBP, cortisol, and TNF-alpha. Confirming our hypothesis, low vagal tone was associated with impaired recovery of cardiovascular, endocrine, and immune markers in healthy males. The data support an inhibitory role of the vagus in the regulation of allostatic systems as described in the neurovisceral integration model. We posit reduced resting HRV as a risk marker for future cardiovascular and other stress-related disease.


Heart rate variability Stress Recovery Blood pressure Cortisol TNF-alpha 



The authors would like to thank the healthy volunteers for participating in the study and Baerbel Girresch for her help with the biochemical analyses. The study was supported by the Universitäre Forschungsförderung of the Charité (Charité University funding, project no. 2006-874).

Conflict of interest statement

There are no financial or other relationships that would lead to a conflict of interest.


  1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222CrossRefPubMedGoogle Scholar
  2. al’Absi M, Arnett DK (2000) Adrenocortical responses to psychological stress and risk for hypertension. Biomed Pharmacother 54:234–244CrossRefPubMedGoogle Scholar
  3. al’Absi M, Lovallo WR, McKey BS, Pincomb GA (1994) Borderline hypertensives produce exaggerated adrenocortical responses to mental stress. Psychosom Med 56:245–250Google Scholar
  4. Altemus M, Rao B, Dhabhar FS, Ding W, Granstein RD (2001) Stress-induced changes in skin barrier function in healthy women. J Invest Dermatol 117(2):309–317CrossRefPubMedGoogle Scholar
  5. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ (2002) Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 195(6):781–788CrossRefPubMedGoogle Scholar
  6. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462CrossRefPubMedGoogle Scholar
  7. Brook RD, Julius S (2003) Autonomic imbalance, hypertension, and cardiovascular risk. Am J Hypertens 13(6 Pt 2):112S–122SGoogle Scholar
  8. Brosschot JF, Pieper S, Thayer JF (2005) Expanding stress theory: prolonged activation and perseverative cognition. Psychoneuroendocrinology 30(10):1043–1049CrossRefPubMedGoogle Scholar
  9. Brydon L, Edwards S, Jia H, Mohamed-Ali V, Zachary I, Martin JF, Steptoe A (2005) Psychological stress activates interleukin-1beta gene expression in human mononuclear cells. Brain Behav Immun 19(6):540–546CrossRefPubMedGoogle Scholar
  10. Buchholz K, Schachinger H, Wagner M, Sharma AM, Deter HC (2003) Reduced vagal activity in salt-sensitive subjects during mental challenge. Am J Hypertens 16:531–536CrossRefPubMedGoogle Scholar
  11. Deter HC, Buchholz K, Schorr U, Mathiak K, Sharma AM (2001) Salt-sensitivity and other predictors of stress-related cardiovascular reactivity in healthy young males. Clin Exp Hypertens 23:213–225CrossRefPubMedGoogle Scholar
  12. Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 130(3):355–391CrossRefPubMedGoogle Scholar
  13. Dugué B, Leppänen EA, Teppo AM, Fyhrquist F, Gräsbeck R (1993) Effects of psychological stress on plasma interleukins-1 beta and 6, C-reactive protein, tumour necrosis factor alpha, anti-diuretic hormone and serum cortisol. Scand J Clin Lab Invest 53(6):555–561PubMedGoogle Scholar
  14. Edwards KM, Burns VE, Ring C, Carroll D (2006) Sex differences in the interleukin-6 response to acute psychological stress. Biol Psychol 71(3):236–239CrossRefPubMedGoogle Scholar
  15. Elenkov IJ, Chrousos GP (2006) Stress system—organization, physiology and immunoregulation. Neuroimmunomodulation 13(5–6):257–267CrossRefPubMedGoogle Scholar
  16. Ellins E, Halcox J, Donald A, Field B, Brydon L, Deanfield J, Steptoe A (2008) Arterial stiffness and inflammatory response to psychophysiological stress. Brain Behav Immun Mar 1 [Epub ahead of print]Google Scholar
  17. Fliege H, Rose M, Arck P, Walter OB, Kocalevent RD, Weber CS, Klapp BF (2005) The Perceived Stress Questionnaire (PSQ) reconsidered: validation and reference values from different clinical and healthy adult samples. Psychosom Med 67:78–88CrossRefPubMedGoogle Scholar
  18. Heesen C, Schulz H, Schmidt M, Gold S, Tessmer W, Schulz KH (2002) Endocrine and cytokine responses to acute psychological stress in multiple sclerosis. Brain Behav Immun 16(3):282–287CrossRefPubMedGoogle Scholar
  19. Heinz A, Hermann D, Smolka MN, Rieks M, Gräf KJ, Pöhlau D, Kuhn W, Bauer M (2003) Effects of acute psychological stress on adhesion molecules, interleukins and sex hormones: implications for coronary heart disease. Psychopharmacology (Berl) 165(2):111–117Google Scholar
  20. Huikuri HV, Jokinen V, Syvänne M, Nieminen MS, Airaksinen KE, Ikäheimo MJ, Koistinen JM, Kauma H, Kesäniemi AY, Majahalme S, Niemelä KO, Frick MH (1999) Heart rate variability and progression of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 19(8):1979–1985PubMedGoogle Scholar
  21. Imholz BP, Langewouters GJ, van Montfrans GA, Parati G, van Goudoever J, Wesseling KH, Wieling W, Mancia G (1993) Feasibility of ambulatory, continuous 24 h finger arterial pressure recording. Hypertension 21:65–73PubMedGoogle Scholar
  22. Janszky I, Ericson M, Lekander M, Blom M, Buhlin K, Georgiades A, Ahnve S (2004) Inflammatory markers and heart rate variability in women with coronary heart disease. J Intern Med 256:421–428CrossRefPubMedGoogle Scholar
  23. Kop WJ (2003) The integration of cardiovascular behavioral medicine and psychoneuroimmunology: new developments based on converging research fields. Brain Behav Immun 17(4):233–237CrossRefPubMedGoogle Scholar
  24. Kop WJ, Weissman NJ, Zhu J, Bonsall RW, Doyle M, Stretch MR, Glaes SB, Krantz DS, Gottdiener JS, Tracy RP (2008) Effects of acute mental stress and exercise on inflammatory markers in patients with coronary artery disease and healthy controls. Am J Cardiol 101(6):767–773PubMedGoogle Scholar
  25. Kraemer HC, Stice E, Kazdin A, Offord D, Kupfer D (2001) How do risk factors work together? Mediators, moderators, and independent, overlapping, and proxy risk factors. Am J Psychiatry 158(6):848–856CrossRefPubMedGoogle Scholar
  26. Laux L, Glanzmann P, Schaffner P, Spielberger CD (1981) STAI State-Trait-Angstinventar. Beltz, WeinheimGoogle Scholar
  27. Levenstein S, Prantera C, Varvo V, Scribano ML, Berto E, Luzi C, Andreoli A (1993) Development of the Perceived Stress Questionnaire—A new tool for psychosomatic research. J Psychosom Res 37:19–32Google Scholar
  28. Liao D, Cai J, Barnes RW, Tyroler HA, Rautaharju P, Holme I et al (1996) Association of cardiac autonomic function and the development of hypertension: the ARIC study. Am J Hypertens 9:1147–1156CrossRefPubMedGoogle Scholar
  29. Lutgendorf SK, Logan H, Costanzo E, Lubaroff D (2004) Effects of acute stress, relaxation, and a neurogenic inflammatory stimulus on interleukin-6 in humans. Brain Behav Immun 18(1):55–64CrossRefPubMedGoogle Scholar
  30. Marsland AL, Gianaros PJ, Prather AA, Jennings JR, Neumann SA, Manuck SB (2007) Stimulated production of proinflammatory cytokines covaries inversely with heart rate variability. Psychosom Med 69(8):709–716CrossRefPubMedGoogle Scholar
  31. McEwen BS (1998) Stress, adaptation, and disease Allostasis and allostatic load. Ann N Y Acad Sci 840:33–44CrossRefPubMedGoogle Scholar
  32. Melzig CA, Weike AI, Hamm AO, Thayer JF (2009) Individual differences in fear-potentiated startle as a function of resting heart rate variability: implications for panic disorder. Int J Psychophysiol 71(2):109–117CrossRefPubMedGoogle Scholar
  33. Miller GE, Rohleder N, Stetler C, Kirschbaum C (2005) Clinical depression and regulation of the inflammatory response during acute stress. Psychosom Med 67(5):679–687CrossRefPubMedGoogle Scholar
  34. Packard RR, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54(1):24–38CrossRefPubMedGoogle Scholar
  35. Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E (2000a) Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 101(18):2149–2153PubMedGoogle Scholar
  36. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000b) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15):1767–1772PubMedGoogle Scholar
  37. Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138(5 Pt 2):S419–S420Google Scholar
  38. Schwenkmezger P, Hodapp V (1991) The state-trait anger expression inventory. Zeitschrift Fur Klinische Psychologie Psychiatrie und Psychotherapie 39:63–68Google Scholar
  39. Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T (2007) RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med 13(3–4):178–184PubMedGoogle Scholar
  40. Spielberger CD (1983) Manual for the state-trait anxiety inventory. Consulting Psychologist Press, Palo Alto, CAGoogle Scholar
  41. Spielberger CD (1999) Manual for the state-trait anger inventory, STAXI-2. Psychological Assessment Resources, Odessa, FLGoogle Scholar
  42. Steptoe A, Marmot M (2005) Impaired cardiovascular recovery following stress predicts 3-year increases in blood pressure. J Hypertens 23(3):529–536CrossRefPubMedGoogle Scholar
  43. Steptoe A, Marmot M (2006) Psychosocial, hemostatic, and inflammatory correlates of delayed poststress blood pressure recovery. Psychosom Med 68(4):531–537CrossRefPubMedGoogle Scholar
  44. Steptoe A, Willemsen G, Owen N, Flower L, Mohamed-Ali V (2001) Acute mental stress elicits delayed increases in circulating inflammatory cytokine levels. Clin Sci (Lond) 101(2):185–192Google Scholar
  45. Steptoe A, Hamer M, Chida Y (2007) The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain Behav Immun 21(7):901–912CrossRefPubMedGoogle Scholar
  46. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17:354–381Google Scholar
  47. Thayer JF (2006) On the importance of inhibition: central and peripheral manifestations of nonlinear inhibitory processes in neural systems. Dose Response 4:2–21CrossRefPubMedGoogle Scholar
  48. Thayer JF, Brosschot JF (2005) Psychosomatics and psychopathology: looking up and down from the brain. Psychoneuroendocrinology 30:1050–1058CrossRefPubMedGoogle Scholar
  49. Thayer JF, Fischer JE (2009) Heart rate variability, overnight urinary norepinephrine, and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. J Intern Med 265:439–447CrossRefPubMedGoogle Scholar
  50. Thayer JF, Lane RD (2007) The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 74:224–242CrossRefPubMedGoogle Scholar
  51. Thayer JF, Lane RD (2009) Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 33:81–88CrossRefPubMedGoogle Scholar
  52. Thayer JF, Sternberg E (2006) Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci 1088:361–372CrossRefPubMedGoogle Scholar
  53. Thayer JF, Hall M, Sollers JJ, Fischer JE (2006) Alcohol use, urinary cortisol, and heart rate variability in apparently healthy men: evidence for impaired inhibitory control of the HPA axis in heavy drinkers. Int J Psychophysiol 59:244–250CrossRefPubMedGoogle Scholar
  54. Thayer JF, Yamamoto SS, Brosschot JF (2009) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. doi: 10.1016/j.icard.2009.09.543
  55. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859CrossRefPubMedGoogle Scholar
  56. Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL, Levy D (1996) Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 94(11):2850–2855Google Scholar
  57. Vasey MW, Thayer JF (1987) The continuing problem of false positives in repeated measures ANOVA in psychophysiology: a multivariate solution. Psychophysiololgy 24:479–486CrossRefGoogle Scholar
  58. von Känel R, Kudielka BM, Preckel D, Hanebuth D, Fischer JE (2006) Delayed response and lack of habituation in plasma interleukin-6 to acute mental stress in men. Brain Behav Immun 20(1):40–48CrossRefGoogle Scholar
  59. Walker BR, Phillips DI, Noon JP, Panarelli M, Andrew R, Edwards HV, Holton DW, Skl JR, Webb DJ, Watt GC (1998) Increased glucocorticoid activity in men with cardiovascular risk factors. Hypertension 31(4):891–895PubMedGoogle Scholar
  60. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388CrossRefPubMedGoogle Scholar
  61. Watt GC, Harrap SB, Foy CJ, Holton DW, Edwards HV, Davidson HR, Connor JM, Lever AF, Fraser R (1992) Abnormalities of glucocorticoid metabolism and the renin-angiotensin system: a four-corners approach to the identification of genetic determinants of blood pressure. J Hypertens 10(5):473–482CrossRefPubMedGoogle Scholar
  62. Weber C, Arck P, Mazurek B, Klapp BF (2002) Impact of a relaxation training on psychometric and immunologic parameters in tinnitus sufferers. J Psychosom Res 52(1):29–33CrossRefPubMedGoogle Scholar
  63. Weber CS, Thayer JF, Rudat M, Perschel HF, Buchholz K, Deter HC (2007) Emotional irritation before mental stress is associated with enhanced peripheral norepinephrine. Scand J Psychol 48(6):459–466CrossRefPubMedGoogle Scholar
  64. Weber CS, Thayer JF, Rudat M, Sharma AM, Perschel FH, Buchholz K, Deter HC (2008) Salt sensitive males show reduced heart rate variability, lower norepinpehrine and enhanced cortisol during mental stress. J Hum Hypertens 22(6):423–431CrossRefPubMedGoogle Scholar
  65. Yang S, Zhang L (2004) Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol 2(1):1–12CrossRefPubMedGoogle Scholar
  66. Ziegler D, Laude D, Akila F, Elghozi JL (2001) Time and frequency domain estimation of early diabetic cardiovascular autonomic neuropathy. Clin Auton Res 11:369–376CrossRefPubMedGoogle Scholar
  67. Zimmermann-Viehoff F, Weber CS, Merswolken M, Rudat M, Deter HC (2008) Low anxiety males display higher degree of salt sensitivity, increased autonomic reactivity, and higher defensiveness. Am J Hypertens 21(12):1292–1297CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Cora Stefanie Weber
    • 1
  • Julian F. Thayer
    • 2
    • 3
  • Miriam Rudat
    • 1
  • Petra H. Wirtz
    • 4
  • Frank Zimmermann-Viehoff
    • 1
  • Alexander Thomas
    • 1
  • Frank H. Perschel
    • 5
  • Petra C. Arck
    • 6
  • Hans C. Deter
    • 1
  1. 1.Department of Psychosomatic Medicine and PsychotherapyCharité UniversitätsmedizinBerlinGermany
  2. 2.Department of PsychologyOhio State UniversityColumbusUSA
  3. 3.Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical FacultyHeidelberg UniversityMannheimGermany
  4. 4.Clinical Psychology and PsychotherapyUniversity of ZurichZurichSwitzerland
  5. 5.Central Institute of Laboratory Medicine and PathobiochemistryCharité UniversitätsmedizinBerlinGermany
  6. 6.Laboratory for Psychoneuroimmunological ResearchCharité UniversitätsmedizinBerlinGermany

Personalised recommendations