European Journal of Applied Physiology

, Volume 108, Issue 1, pp 31–38 | Cite as

Vitamin D receptor gene FokI polymorphisms influence bone mass in adolescent football (soccer) players

  • Maria Eduarda L. Diogenes
  • Flávia Fioruci Bezerra
  • Giselda M. K. Cabello
  • Pedro H. Cabello
  • Laura M. C. Mendonça
  • Astrogildo V. Oliveira Júnior
  • Carmen M. Donangelo
Original Article


The genetic influence on bone mineralization during adolescence is unclear possibly due to modifying factors such as skeletal maturation and lifestyle. We evaluated the influence of polymorphisms of the vitamin D receptor (VDR) gene on longitudinal changes in bone mass, bone- and calcium-related hormones in 46 adolescent soccer players (11.8–14.2 years). Total body bone mineral content (TBMC) and density (TBMD) were measured at baseline and after 6 months. Insulin-like growth factor-I (IGF-1), testosterone, intact parathyroid hormone, and activity of plasma bone alkaline phosphatase were measured at baseline and after 3 months. The influence of FokI or TaqI VDR genotypes on changes in the outcome variables were analyzed by univariate ANOVA with adjustment for chronological age, skeletal age and body weight at baseline. At baseline, boys with Ff genotype had higher TBMC, TBMD, TBMD Z-score compared to those with FF genotype (P < 0.05). After 3 months, Ff boys also had higher increment in plasma IGF-1 (P < 0.05). FokI polymorphism did not influence changes in bone mass measurements after 6 months, although differences detected at baseline remained significant after 6 months. There were no differences in the outcome variables according to TaqI genotypes. This study demonstrates that FokI polymorphisms affect bone mass in Brazilian adolescent soccer players and suggests that the FokI effect on bone mineralization occurs during bone maturation, possibly at the initial pubertal stages.


Vitamin D receptor gene Polymorphisms Soccer Bone acquisition Adolescent boys 



We thank Josely Correa Koury and Karla de Jesus Fernandes de Oliveira for their support in this research project and for the assistance with data collection. We are grateful to all the adolescents who participated in the study. This work was supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES (Brazil).

Conflict of interest statement

All authors have no conflicts of interest.


  1. Abrams AS, Griffin IJ, Hawthorne KM et al (2005) Vitamin D receptor Fok1 polymorphisms affect calcium absorption, kinetics, and bone mineralization rates during puberty. J Bone Miner Res 20:945–953CrossRefPubMedGoogle Scholar
  2. Abrams SA, Hicks PD, Hawthorne KM (2009) Higher serum 25-hydroxyvitamin D levels in school-age children are inconsistently associated with increased calcium absorption. J Clin Endocrinol Metab 94(7):2421–2427CrossRefPubMedGoogle Scholar
  3. Ankarberg-Lindgren C, Norjavaara E (2004) Changes of diurnal rhythm and levels of total and free testosterone secretion from pre to late puberty in boys: testis size of 3 ml is a transition stage to puberty. Eur J Endocrinol 151:747–757CrossRefPubMedGoogle Scholar
  4. Arslanian SA, Kalhan SC (1996) Protein turnover during puberty in normal children. Am J Physiol 270:E79–E84PubMedGoogle Scholar
  5. Bailey DA, McKay HA, Mirwald RL et al (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res 10:1672–1679CrossRefGoogle Scholar
  6. Bailey DA, Martin AD, McKay HA et al (2000) Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 15(11):2245–2250CrossRefPubMedGoogle Scholar
  7. Bezerra FF, Cabello GMK, Mendonça LMC et al (2008) Bone mass and breast milk calcium concentration are associated with vitamin D receptor gene polymorphisms in adolescent mothers. J Nutr 138:277–281PubMedGoogle Scholar
  8. Calbet JAL, Dorado C, Diaz-Herrera P et al (2001) High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc 33:1682–1687CrossRefPubMedGoogle Scholar
  9. Cashman KD (2007) Diet, nutrition, and bone health. J Nutr 137:2507S–2512SPubMedGoogle Scholar
  10. Cusack S, Molgaard C, Michaelsen KF et al (2006) Vitamin D and estrogen receptor—a genotype and indices of bone mass and bone turnover in Danish girls. J Bone Miner Metab 24:329–336CrossRefPubMedGoogle Scholar
  11. Eisman JA (1999) Genetics of osteoporosis. Endocr Rev 20:788–804CrossRefPubMedGoogle Scholar
  12. Ellis KJ, Shypailo RJ, Hergenroeder A et al (1996) Total body calcium and bone mineral content: comparison of dual-energy X-ray absorptiometry with neutron activation analysis. J Bone Miner Res 11:843–848PubMedCrossRefGoogle Scholar
  13. Falchetti A, Sferrazza C, Cepollaro C et al (2007) FokI polymorphism of the vitamin D receptor gene correlates with parameters of bone mass and turnover in a female population of the Italian island of Lampedusa. Calcif Tissue Int 80:15–20CrossRefPubMedGoogle Scholar
  14. Farley JR, Chestnut CH, Baylink DJ (1981) Improved method for quantitative determination in serum of alkaline phosphatase of skeletal origin. Clin Chem 27:2002–2007PubMedGoogle Scholar
  15. Forwood MR, Baxter-Jones AD, Beck TJ et al (2006) Physical activity and strength of the femoral neck during the adolescent growth spurt: a longitudinal analysis. Bone 38:576–583CrossRefPubMedGoogle Scholar
  16. Garnett SP, Högler W, Blades B et al (2004) Relation between hormones and body composition, including bone, in prepubertal children. Am J Clin Nutr 80:966–972PubMedGoogle Scholar
  17. Hill MK, Braun M, Kern M et al (2008) Predictors of calcium retention in adolescent boys. J Clin Endocrinol Metabol 93:4743–4748CrossRefGoogle Scholar
  18. Hiort O (2002) Androgens and puberty. Best Pract Res Clin Endocrinol Metab 16:31–41CrossRefPubMedGoogle Scholar
  19. Institute of Medicine, Food, Nutrition Board (1997) Dietary reference intakes of calcium, phosphorus, magnesium, vitamin D and fluoride. National Academy Press, Washington, DCGoogle Scholar
  20. Kanbur NO, Derman O, Kinik E (2005) The relationships between pubertal development, IGF-1 axis, and bone formation in healthy adolescents. J Bone Miner Metab 23:76–83CrossRefPubMedGoogle Scholar
  21. Katsumata K, Nishizawa K, Unno A et al (2002) Association of gene polymorphisms and bone density in Japanese girl. J Bone Miner Metab 20:164–169CrossRefPubMedGoogle Scholar
  22. Kitagawa I, Kitagawa Y, Kawase Y et al (1998) Advanced onset of menarche and higher bone mineral density depending on vitamin D receptor gene polymorphism. Eur J Endocrinol 139:522–527CrossRefPubMedGoogle Scholar
  23. Laaksonen MML, Kärkkäinen MUM, Outila TA et al (2004) Vitamin D receptor gene start codon polymorphism (FokI) is associated with forearm bone mineral density and calcaneal ultrasound in Finnish adolescent boys but not in girls. J Bone Miner Metab 22:479–485CrossRefPubMedGoogle Scholar
  24. Lerner BR, Lei DLM, Chaves SP et al (2000) O Cálcio consumido por adolescentes de escolas públicas de Osasco, São Paulo. Rev Nutr Campinas 13(1):57–63Google Scholar
  25. Lorentzon M, Lorentzon R, Nordstrom P (2000) Vitamin D receptor gene polymorphism is associated with birth height, growth to adolescence, and adult stature in healthy Caucasian men: a cross-sectional and longitudinal study. J Clin Endocrinol Metab 85:1666–1671CrossRefPubMedGoogle Scholar
  26. Lorentzon M, Lorentzon R, Nordstrom P (2001) Vitamin D receptor gene polymorphism is related to bone density, circulating osteocalcin and parathyroid hormone in healthy adolescent girls. J Bone Miner Metab 19:302–307CrossRefPubMedGoogle Scholar
  27. Macdonald HM, McGuigan FE, Stewart A et al (2006) Large-scale population-based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women. J Bone Miner Res 21:151–162CrossRefPubMedGoogle Scholar
  28. Morrison N, Qi JC, Tokita A et al (1994) Prediction of bone density from vitamin D receptor alleles. Nature 367:284–287CrossRefPubMedGoogle Scholar
  29. Nakamura O, Ishii T, Ando Y et al (2002) Potential role of vitamin D receptor gene polymorphism in determining bone phenotype in young male athletes. J Appl Physiol 93:1973–1979PubMedGoogle Scholar
  30. Nordström A, Högström M, Nordström P (2008) Effects of different types of weight-bearing loading on bone mass and size in young males: a longitudinal study. Bone 42:565–571CrossRefPubMedGoogle Scholar
  31. Peters BSE, Dos Santos DL, Fisberg M et al (2009) Prevalence of vitamin D insufficiency in Brazilian adolescents. Ann Nutr Metab 54:15–21CrossRefPubMedGoogle Scholar
  32. Pomerants T, Tillmann V, Jürimäe J et al (2007) The influence of serum ghrelin, IGF axis and testosterone on bone mineral density in boys at different stages of sexual maturity. J Bone Miner Metab 25:193–197CrossRefPubMedGoogle Scholar
  33. Rabon-Stith KM, Hagberg JM, Phares DA et al (2005) Vitamin D receptor FokI genotype influences bone mineral density response to strength training, but not aerobic training. Exp Physiol 90(4):653–661CrossRefPubMedGoogle Scholar
  34. Sainz J, Tornout JMV, Loro ML et al (1997) Vitamin D-receptor gene polymorphisms and bone density in prepubertal American girls of Mexican descent. N Engl J Med 337:77–82CrossRefPubMedGoogle Scholar
  35. Silva CC, Goldberg TBL, Teixeira AS et al (2007) Bone mineralization in Brazilian adolescents: the years of maximum bone mass incorporation. Arch Latinoam Nutr 57:118–124PubMedGoogle Scholar
  36. Strandberg S, Nordström P, Lorentzon R et al (2003) Vitamin D receptor start codon polymorphism (FokI) is related to bone mineral density in healthy adolescent boys. J Bone Miner Metab 21:109–113CrossRefPubMedGoogle Scholar
  37. Tanner JM (1992) Growth at adolescence. Blackwell, UKGoogle Scholar
  38. Tanner JM, Healy MJR, Goldstrin H et al (2001) Assessment of skeletal maturity and prediction of adult height (TW3 method). WB Saunders, LondonGoogle Scholar
  39. Terpstra L, Kmolt DL, Van Coeverden SC et al (2006) Bone metabolism markers predict increase in bone mass, height and sitting height during puberty depending on the VDR FokI genotype. Clin Endocrinol (Oxf) 64(6):625–631CrossRefGoogle Scholar
  40. Thakkinstian A, D’Este C, Eisman J et al (2004) Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res 19:419–428CrossRefPubMedGoogle Scholar
  41. Van Coeverden SCCM, Netelenbos JC, de Ridder CM et al (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol 57(1):107–116CrossRefGoogle Scholar
  42. Vatanparast H, Baxter-Jones A, Faulkner RA et al (2005) Positive effects of vegetable and fruit consumption and calcium intake on bone mineral accrual in boys during growth from childhood to adolescence: the University of Saskatchewan Pediatric Bone Mineral Accrual Study. Am J Clin Nutr 82:700–706PubMedGoogle Scholar
  43. Weaver CM, McCabe LD, McCabe GP et al (2008) Vitamin D status and calcium metabolism in adolescent black and white girls on a range of controlled calcium intakes. J Clin Endocrinol Metab 293:3907–3914CrossRefGoogle Scholar
  44. Whiting SJ, Vatanparast H, Baxter-Jones A et al (2004) Factors that affect bone mineral accrual in the adolescent growth spurt. J Nutr 134:696S–700SPubMedGoogle Scholar
  45. Wood RJ, Fleet JC (1998) The genetics of osteoporosis: vitamin D receptor polymorphisms. Annu Rev Nutr 18:33–258CrossRefGoogle Scholar
  46. NCHS—National Center for Health Statistics. Available from:
  47. Yilmaz D, Ersoy B, Bilgin E et al (2005) Bone mineral density in girls and boys at different pubertal stages: relation with gonadal steroids, bone formation markers, and growth parameters. J Bone Miner Metab 23:476–482CrossRefPubMedGoogle Scholar
  48. Zitterman A, Sabatschus O, Jantzen S et al (2000) Exercise-trained young men have higher calcium absorption rates and plasma calcitriol levels compared with age-matched sedentary controls. Calcif Tissue Int 67:215–219CrossRefGoogle Scholar
  49. Zmuda JM, Cauley JA, Ferell RE (2000) Molecular epidemiology of vitamin D receptor gene variants. Epidemiol Rev 22:203–217PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Maria Eduarda L. Diogenes
    • 1
  • Flávia Fioruci Bezerra
    • 1
    • 2
  • Giselda M. K. Cabello
    • 3
  • Pedro H. Cabello
    • 3
  • Laura M. C. Mendonça
    • 4
  • Astrogildo V. Oliveira Júnior
    • 5
  • Carmen M. Donangelo
    • 1
  1. 1.Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de NutriçãoUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Laboratório de Genética Humana, Departamento de GenéticaInstituto Oswaldo Cruz, FIOCRUZRio de JaneiroBrazil
  4. 4.Sociedade Brasileira de Densitometria ClínicaRio de JaneiroBrazil
  5. 5.Instituto de Educação Física e DesportosUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations