Advertisement

European Journal of Applied Physiology

, Volume 107, Issue 2, pp 203–210 | Cite as

Acute high-intensity exercise with low energy expenditure reduced LDL-c and total cholesterol in men

  • Fabio S. LiraEmail author
  • Nelo E. Zanchi
  • Adriano E. Lima-Silva
  • Flávio O. Pires
  • Rômulo C. Bertuzzi
  • Ronaldo V. Santos
  • Erico C. Caperuto
  • Maria A. Kiss
  • Marília Seelaender
Original Article

Abstract

A reduction in LDL cholesterol and an increase in HDL cholesterol levels are clinically relevant parameters for the treatment of dyslipidaemia, and exercise is often recommended as an intervention. This study aimed to examine the effects of acute, high-intensity exercise (~90% VO2max) and varying carbohydrate levels (control, low and high) on the blood lipid profile. Six male subjects were distributed randomly into exercise groups, based on the carbohydrate diets (control, low and high) to which the subjects were restricted before each exercise session. The lipid profile (triglycerides, VLDL, HDL cholesterol, LDL cholesterol and total cholesterol) was determined at rest, and immediately and 1 h after exercise bouts. There were no changes in the time exhaustion (8.00 ± 1.83; 7.82 ± 2.66; and 9.09 ± 3.51 min) and energy expenditure (496.0 ± 224.8; 411.5 ± 223.1; and 592.1 ± 369.9 kJ) parameters with the three varying carbohydrate intake (control, low and high). Glucose and insulin levels did not show time-dependent changes under the different conditions (P > 0.05). Total cholesterol and LDL cholesterol were reduced after the exhaustion and 1 h recovery periods when compared with rest periods only in the control carbohydrate intake group (P < 0.05), although this relation failed when the diet was manipulated. These results indicate that acute, high-intensity exercise with low energy expenditure induces changes in the cholesterol profile, and that influences of carbohydrate level corresponding to these modifications fail when carbohydrate (low and high) intake is manipulated.

Keywords

Lipid profile Carbohydrate Exercise intensity 

References

  1. Aellen R, Hollmann W, Boutellier U (1993) Effects of aerobic and anaerobic training on plasma lipoproteins. Int J Sports Med 14:396–400. doi: 10.1055/s-2007-1021198 PubMedCrossRefGoogle Scholar
  2. Astrup A, Meinert Larsen T, Harper A (2004) Atkins and other low-carbohydrate diets: hoax or an effective tool for weight loss? Lancet 364:897–899. doi: 10.1016/S0140-6736(04)16986-9 PubMedCrossRefGoogle Scholar
  3. Barstow TJ, Jones AM, Nguyen PH, Casaburi R (1996) Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol 81:1642–1650PubMedGoogle Scholar
  4. Bortolotti M, Tappy L, Schneiter P (2007) Fish oil supplementation does not alter energy efficiency in healthy males. Clin Nutr 26:225–230. doi: 10.1016/j.clnu.2006.11.006 PubMedCrossRefGoogle Scholar
  5. Bouckaert J, Jones AM, Koppo K (2004) Effect of glycogen depletion on the oxygen uptake slow component in humans. Int J Sports Med 25:351–356. doi: 10.1055/s-2004-820938 PubMedCrossRefGoogle Scholar
  6. Campaigne BN, Fontaine RN, Park MS, Rymaszewski ZJ (1993) Reversal cholesterol transport with acute exercise. Med Sci Sports Exerc 25:1346–1351. doi: 10.1249/00005768-199312000-00005 PubMedGoogle Scholar
  7. Carter H, Pringle JSM, Boobis L, Jones AM, Doust JH (2004) Muscle glycogen depletion alters oxygen uptake kinetics during heavy exercise. Med Sci Sports Exerc 36(6):965–972. doi: 10.1249/01.MSS.0000128202.73676.11 PubMedCrossRefGoogle Scholar
  8. Cox AJ, Pyne DB, Cox GR, Callister R, Gleeson M (2008) Pre-exercise carbohydrate status influences carbohydrate-mediated attenuation of post-exercise cytokine responses. Int J Sports Med 29:1003–1009. doi: 10.1055/s-2008-1038753 PubMedCrossRefGoogle Scholar
  9. De Bock K, Derave W, Eijnde BO, Hesselink MK, Koninckx E, Rose AJ, Schrauwen P, Bonen A, Richter EA, Hespel P (2008) Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. J Appl Physiol 104:1045–1055. doi: 10.1152/japplphysiol.01195.2007 PubMedCrossRefGoogle Scholar
  10. Di Prampero PE, Ferretti G (1999) The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol 118:103–115. doi: 10.1016/S0034-5687(99)00083-3 PubMedCrossRefGoogle Scholar
  11. Durstine JL, Grandjean PW, Cox CA, Thompson PD (2002) Lipids, lipoproteins, and exercise. J Cardiopulm Rehabil 22:385–398. doi: 10.1097/00008483-200211000-00002 PubMedCrossRefGoogle Scholar
  12. Ferguson MA, Alderson NL, Trost SG, Essig DA, Burke JR, Durstine JL (1998) effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol 85:1169–1174PubMedGoogle Scholar
  13. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of ldl-cholesterol in plasma, without use of the ultracentrifuge. Clin Clem 18:499–502Google Scholar
  14. Fruchart JC, Ailhaud G, Bard JM (1993) Heterogeneity of high density lipoprotein particles. Circulation 87(Suppl 4):III22–III27Google Scholar
  15. Glass C, Knowlton RG, Sanjabi PB et al (1997) The effect of exercise-induced glycogen depletion on the lactate, ventilatory and electromyographic thresholds. J Sports Med Phys Fitness 37:32–40PubMedGoogle Scholar
  16. Gollnick PD, Armstrong RB, Sembrowich WL et al (1973) Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J Appl Physiol 34:615–618PubMedGoogle Scholar
  17. Gollnick PD, Piehl K, Saltin B (1974) Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 241:45–57PubMedGoogle Scholar
  18. Grandjean PW, Crouse SF, Rohack JJ (2000) Influence of cholesterol status on blood lipid and lipoprotein enzyme responses to aerobic exercise. J Appl Physiol 89:472–480PubMedGoogle Scholar
  19. Grisdale RK, Jacobs I, Cafarelli E (1990) Relative effects of glycogen depletion and previous exercise on muscle force and endurance capacity. J Appl Physiol 69:1276–1282PubMedGoogle Scholar
  20. Heigenhauser GJF, Sutton JR, Jones NL (1983) Effect of glycogen depletion on the ventilatory response to exercise. J Appl Physiol 54:470–474PubMedGoogle Scholar
  21. Hubinger L, Mackinnon LT, Lepre F (1995) Lipoprotein(A) [Lp(A)] levels in middle-aged male runners and sedentary controls. Med Sci Sports Exerc 27(4):490–496PubMedGoogle Scholar
  22. Kokkinos PF, Fernhall B (1999) Physical activity and high-density lipoprotein cholesterol levels. What is the relationship? Sports Med 28:307–314PubMedCrossRefGoogle Scholar
  23. Krustrup P, Soderlund K, Mohr M, Bangsbo J (2004) Slow-twitch fiber glycogen depletion elevates moderate-exercise fast-twitch fiber activity and 02 uptake. Med Sci Spons Exerc 36(6):973–982CrossRefGoogle Scholar
  24. Kuipers H, Verstappen FTJ, Keizer HA, Geurten P, Vankranenburg G (1985) variability of aerobic performance in the laboratory and its physiological correlates. Int J Sports Med 6(4):197–201PubMedCrossRefGoogle Scholar
  25. Leaf DA (2003) The effect of physical exercise on reverse cholesterol transport. Metabolism 52:950–957PubMedCrossRefGoogle Scholar
  26. Lima-Silva AE, De-Oliveira FR, Nakamura FY, Gevaerd MS (2009) Effect of carbohydrate availability on time to exhaustion in exercise performed at two different intensities. Braz J Med Biol Res 42:404–412PubMedCrossRefGoogle Scholar
  27. Lira FS, Tavares FL, Yamashita AS, Koyama CH, Alves MJ, Caperuto EC, Batista ML Jr, Seelaender M (2008) Effect of endurance training upon lipid metabolism in the liver of cachectic tumour-bearing rats. Cell Biochem Funct 26:701–708PubMedCrossRefGoogle Scholar
  28. Magkos F, Patterson BW, Mohammed BS, Mittendorfer B (2007) A single 1-H bout of evening exercise increases basal ffa flux without affecting VLDL-triglyceride and VLDL-apolipoprotein B-100 kinetics in untrained lean men. Am J Physiol Endocrinol Metab 292:E1568–E1574PubMedCrossRefGoogle Scholar
  29. Magkos F, Tsekouras YE, Prentzas KI, Basioukas KN, Matsama SG, Yanni AE, Kavouras SA, Sidossis LS (2008) Acute exercise-induced changes in basal VLDL-triglyceride kinetics leading to hypotriglyceridemia manifest more readily after resistance than endurance exercise. J Appl Physiol 31Google Scholar
  30. Ozyener F, Rossiter HB, Ward SA, Whipp BJ (2001) Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. J Physiol 533:891–902PubMedCrossRefGoogle Scholar
  31. Park DH, Ransone JW (2003) Effects of submaximal exercise on high-density lipoprotein-cholesterol subfractions. Int J Sports Med 24:245–251PubMedCrossRefGoogle Scholar
  32. Peoples GE, Mclennan PL, Howe PR, Groeller H (2008) Fish oil reduces heart rate and oxygen consumption during exercise. J Cardiovasc Pharmacol 52(6):540–547PubMedCrossRefGoogle Scholar
  33. Podolin DA, Munger PA, Mazzeo RS (1991) Plasma catecholamine and lactate response during graded exercise with varied glycogen conditions. J Appl Physiol 71(4):1427–1433PubMedGoogle Scholar
  34. Ribeiro JP, Hughes V, Fielding RA et al (1986) Metabolic and ventilatory responses to steady-state exercise relative to lactate thresholds. Eur J Appl Physiol Occup Physiol 55:215–221PubMedCrossRefGoogle Scholar
  35. Seip RL, Moulin P, Cocke T, Tall A, Kohrt WM, Mankowitz K, Semenkovich CF, Ostlund R, Schonfeld G (1993) Exercise training decreases plasma cholesteryl ester transfer protein. Arterioscler Thromb 13:1359–1367PubMedGoogle Scholar
  36. Simopoulos AP (2008) Omega-3 fatty acids, exercise, physical activity and athletics. World Rev Nutr Diet 98:23–50PubMedCrossRefGoogle Scholar
  37. Thomas TR, Smith BK, Donahue OM, Altena TS, James-Kracke M, Sun GY (2004) Effects of omega-3 fatty acid supplementation and exercise on low-density lipoprotein and high-density lipoprotein subfractions. Metabolism 53(6):749–754PubMedCrossRefGoogle Scholar
  38. Thomas TR, Liu Y, Linden MA, Rector RS (2007) Interaction of exercise training and n-3 fatty acid supplementation on postprandial lipemia. Appl Physiol Nutr Metab 32(3):473–480PubMedCrossRefGoogle Scholar
  39. Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS (2008) High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am J Physiol Endocrinol Metab 295(4):E851–E858PubMedCrossRefGoogle Scholar
  40. Volek JS, Sharman MJ, Forsythe CE (2005) Modification of lipoproteins by very low-carbohydrate diets. J Nutr 135(6):1339–1342PubMedGoogle Scholar
  41. Weltman A, Weltman J, Rutt R, Seip R, Levine S, Snead D et al (1989) Percentages of maximal heart rate, heart rate reserve, and VO2peak for determining endurance training intensity in sedentary women. Int J Sports Med 10:212–216PubMedCrossRefGoogle Scholar
  42. Whipp BJ (1994) The bioenergetic and gas exchange basis of exercise testing. Clin Chest Med 15:173–192PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Fabio S. Lira
    • 1
    • 2
    Email author
  • Nelo E. Zanchi
    • 1
    • 3
  • Adriano E. Lima-Silva
    • 4
  • Flávio O. Pires
    • 5
  • Rômulo C. Bertuzzi
    • 5
  • Ronaldo V. Santos
    • 6
  • Erico C. Caperuto
    • 1
  • Maria A. Kiss
    • 5
  • Marília Seelaender
    • 1
  1. 1.Molecular Biology of the Cell Group, Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
  2. 2.Division of Nutrition Physiology, Department of PhysiologyFederal University of Sao PauloSão PauloBrazil
  3. 3.Laboratory of Applied Nutrition and Metabolism, Physical Education and Sport SchoolUniversity of São PauloSão PauloBrazil
  4. 4.Sports Science Research GroupFederal University of AlagoasMaceióBrazil
  5. 5.School of Physical Education and SportUniversity of São PauloSão PauloBrazil
  6. 6.Department of BioscienceFederal University of São PauloSão PauloBrazil

Personalised recommendations