Advertisement

European Journal of Applied Physiology

, Volume 107, Issue 1, pp 61–72 | Cite as

Exercise-induced elevation in plasma oxidative generating capability augments the temporal inflammatory response stimulated by lipopolysaccharide

  • Suzanne Maria HurstEmail author
  • K. A. Lyall
  • R. D. Hurst
  • L. M. Stevenson
Original Article

Abstract

Prolonged oxidative stress is detrimental to health; however, transient oxidative stress may improve immune capability. We examined whether exercise-induced increases in the plasma oxidative generating capability enhance immune responsiveness to potential pathogens. Twelve individuals underwent a 30-min row and pre and post-exercise bloods were collected for oxidative stress and immune assessment. We found that exercise induced a transient increase in plasma carbonyls (3.2–5.3 nmol/mg protein) and creatine kinase activity (0.5–1.2 absorbance/min/mg protein) and that lipopolysaccharide (LPS) stimulation (0.5–24 h) of pre- and post-exercise blood augmented temporal tumour necrosis factor-α (TNFα) secretion. Further characterisation of plasma using a modified dihydro-2′,7′-dichlorohydrofluorescein (DCF) assay revealed that addition of a sub-threshold of hydrogen peroxide to post-exercise (and not pre-exercise) plasma caused a sixfold increase in the radical oxygen species (ROS) generating capability after 15 min (555 ± 131 to 3607 ± 488 change in fluorescent intensity [ΔFI]), which was inhibited using 60 mM N-acetyl-l-cysteine (920 ± 154 ΔFI). Furthermore, cell experiments revealed that LPS stimulation of either THP-1 cells pre-incubated with post-exercise plasma or peripheral blood mononuclear cells pre-treated with pro-oxidants, modulated the temporal secretion of key cytokines that regulate the initiation, progression and resolution of an inflammatory response. These results indicate that exercise-induced changes in plasma parameters (e.g. oxidative generating capability—dependent or independent of inflammatory mediators) augment the temporal LPS response and support the notion that repeated transient oxidative stress (such as that induced by regular exercise) is important for a “healthy” immune system.

Keywords

Exercise Reactive oxygen species Lipopolysaccharide Acute inflammation 

Notes

Acknowledgments

We thank the individuals who agreed to participate in this study. Thanks also to Robyn Wells, Steve Payne and Kim Lo for their technical support, plus Drs Margot Skinner and Jeff Greenwood for their constructive advice in the writing of this manuscript. This work was funded by The New Zealand Institute of Plant and Food Research Ltd. The authors declare that the human and cell experiments comply with the current laws of New Zealand and was approved by The Northern Ethical Regional Committee (Region Y), Hamilton, Waikato, New Zealand (NTY/07/10/106). Furthermore, the human exercise trial was registered with the Australian New Zealand Clinical Trials Registry (# ACTRN12608000317392).

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

  1. Aoi W, Naito Y, Takanami Y, Kawai Y, Sakuma K, Ichikawa H, Yoshida N, Yoshikawa Y (2004) Oxidative stress and delayed muscle damage after exercise. Free Radic Biol Med 37(4):480–487. doi: 10.1016/j.freeradbiomed.2004.05.008 PubMedCrossRefGoogle Scholar
  2. Bloomer RJ (2008) Effect of exercise on oxidative stress biomarkers. Adv Clin Chem 46:1–50. doi: 10.1016/S0065-2423(08)00401-0 PubMedCrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive test for the quantification of μg quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:245–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  4. Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C (2001) Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after acute muscle injury induced by eccentric exercise. Free Radic Biol Med 31(6):745–753. doi: 10.1016/50891-5849(01)00640-2 PubMedCrossRefGoogle Scholar
  5. Cooper DM, Radom-Aizik S, Schwindt C, Zaldivar F (2007) Dangerous exercise: lessons learned from dysregulated inflammatory responses to physical activity. J Appl Physiol 103(2):700–709. doi: 10.1152/japplphysiol.00225.2207 PubMedCrossRefGoogle Scholar
  6. Deaton CM, Marlin DJ (2004) Exercise-associated oxidative stress. Clin Tech Equine Pract 2(3):278–291. doi: 10.1053/51534-7516(03)00070-2 CrossRefGoogle Scholar
  7. Degerstrom J, Osterud B (2006) Increased inflammatory response of blood cells to repeated bout of endurance exercise. Med Sci Sports Exerc 38(7):1297–1303. doi: 10.1249/01.mss.0000227315.93351.8d PubMedCrossRefGoogle Scholar
  8. Den Broeder AA, Wanten GJA, Oyen WJG, Naber T, Van Riel PL, Barrera P (2003) Neutrophil migration and production of reactive oxygen species during treatment with a fully human anti-tumor necrosis factor-α monoclonal antibody in patients with rheumatoid arthritis. J Rheumatol 30(2):232–237Google Scholar
  9. Edwards KM, Burns VE, Carroll D, Drayson M, Ringz C (2007a) The acute stress-induced immunoenhancement hypothesis. Exerc Sport Sci Rev 35(3):150–155. doi: 10.1097/JES.0b013e3180a031bd PubMedCrossRefGoogle Scholar
  10. Edwards KM, Burns KM, Allen LM, McPhee JS, Bosch JA, Carroll D, Drayson M, Ring C (2007b) Eccentric exercise as an adjuvant to influenza vaccination. Brain Behav Immun 21(2):209–217. doi: 10.1016/j.bbi.2006.04.158 PubMedCrossRefGoogle Scholar
  11. German Society for Clinical Chemistry (1977) Standardization of methods for the determination of creatine kinase activity. Eur J Clin Chem Biochem 15:255–260Google Scholar
  12. Gokhale R, Chandrashekara S, Vasanthakumar KC (2007) Cytokine response to strenuous exercise in athletes and non-athletes—an adaptive response. Cytokine 40(2):123–127. doi: 10.1016/j.cyto.2007.08.006 PubMedCrossRefGoogle Scholar
  13. Gomez-Cabrera M-C, Domenech E, Vina J (2008) Moderate exercise is an antioxidant: Up-regulation of antioxidant genes by training. Free Radic Biol Med 44:126–131. doi: 10.1016/j.freeradbiomed.2007.02.001 PubMedCrossRefGoogle Scholar
  14. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348(2):138–150. doi: 10.1056/NEJMra021333 PubMedCrossRefGoogle Scholar
  15. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295(4):C849–C868. doi: 10.1152/ajpcell.00283.2008 PubMedCrossRefGoogle Scholar
  16. Karvonen M, Kentala K, Mustala O (1957) The effects of training on heart rate: a longitudinal study. Ann Med Exp Biol Fenn 35:307–315PubMedGoogle Scholar
  17. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Meth Enzymol 186:464–478. doi: 10.1385/1-59259-173-6:123 PubMedCrossRefGoogle Scholar
  18. Li N, Karin M (1999) Is NF-κB the sensor for oxidative stress? FASEB J 13:1137PubMedGoogle Scholar
  19. Matthews CE, Ockene IS, Freedson PS, Rosal MC, Merriam PA, Hebert JR (2002) Moderate to vigorous physical activity and risk of upper-respiratory tract infection. Med Sci Sports Exerc 34:1242–1248. doi: 10.1097/00005768-200208000-00003 PubMedCrossRefGoogle Scholar
  20. Morabito F, Tomaino A, Cristani M, Cimino F, Martino A, Minciullo PL, Calabro C, Saija A, Gangemi S (2005) Modification of the content of plasma protein carbonyl groups in donors after granulocyte colony stimulating factor-induced stem cell mobilization. Trans Aphereis Sci 33:141–146. doi: 10.1016/j.transci.2005.05.003 CrossRefGoogle Scholar
  21. Nieman DC (2000) Is infection risk linked to exercise workload? Med Sci Sports Exerc 32(Suppl. 7):S406–S411. doi: 10.1097/00005768-200007001-00005 PubMedGoogle Scholar
  22. Nieman DC, Henson DA, McAnulty SR, McAnulty L, Swick NS, Utter AC, Vinci DM, Opiela SJ, Morrow JD (2002) Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol 92:1970–1977. doi: 10.1152/japplphysiol.00961.2001 PubMedGoogle Scholar
  23. Northoff H, Berg A, Weinstock C (1998) Similarities and differences of the immune response to exercise and trauma: the IFNγ concept. Can J Phys 76:497–504. doi: 10.1139/cjpp-76-5-497 CrossRefGoogle Scholar
  24. Oliver IT (1955) A spectrophotometric method for the determination of creatine phosphokinase and myokinase. Biochem J 61:116PubMedGoogle Scholar
  25. Ostrowski K, Rohde T, Schjerling P, Pedersen BK (1999) Pro-and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515(1):287–291. doi: 10.1111/j.1469-7793.1999.287ad.x PubMedCrossRefGoogle Scholar
  26. Phillips MD, Flynn MG, McFarlin BK, Steward LK, Timmerman KL, Ji H (2008) Resistive exercise blunts LPS-stimulated TNF-alpha and IL-1 beta. Int J Sports Med 29(2):102–109. doi: 10.1055/s-2007-965115 PubMedCrossRefGoogle Scholar
  27. Rogers PJ, Tyce GM, Weinshilboum RM, O’Connor DT, Bailey KR, Bove AA (1991) Catecholamine metabolic pathways and exercise training. Plasma and urine catecholamines, metabolic enzymes and chromogranin-A. Circulation 84:2346–2356PubMedGoogle Scholar
  28. Sachdev S, Davies KJA (2008) Production, detection and adaptive responses to free radicals in exercise. Free Radic Biol Med 44:215–223. doi: 10.1016/j.freeradbiomed.2007.07.019 PubMedCrossRefGoogle Scholar
  29. Soller BR, Hagen RD, Shear M, Walz JM, Landry M, Anunciacion D, Orquiola A, Heard SO (2007) Comparison of intramuscular and venous blood pH, pCO2 and pO2 during rhythmic handgrip exercise. Physiol Meas 28:639–649. doi: 10.1088/0967-3334/28/6/003 PubMedCrossRefGoogle Scholar
  30. Starkie RL, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK (2003) Exercise and IL-6 infusion inhibits endotoxin-induced TNFα production in humans. FASEB J 17:884–886. doi: 10.1096/fj.02-0670fje PubMedGoogle Scholar
  31. Starkie RL, Hargreaves M, Rolland J, Febbraio MA (2005) Heat stress, cytokines, and the immune response to exercise. Brain Behav Immun 19:404–412. doi: 10.1016/j.bbi.2005.03.005 PubMedCrossRefGoogle Scholar
  32. Vassilakopoulos T, Karatza MH, Paraskevi K, Kollintza A, Zakynthinos S, Roussos C (2002) Antioxidants attenuates the plasma cytokines response to exercise in humans. J Appl Physiol 94:1025–1032. doi: 10.1152/japplphysiol.00735.2002 PubMedGoogle Scholar
  33. Vider J, Lehtmaa J, Kullisaar T, Vihalemm T, Zilmer K, Kairane C, Landor A, Zilmer M (2001) Acute mmune response in respect to exercise-induced oxidative stress. Path Physiol 7:263–270. doi: 10.1016/S0928-4680(00)00057-2 Google Scholar
  34. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27(5–6):612–616. doi: 10.1016/S0891-5849(99)00107-0 PubMedCrossRefGoogle Scholar
  35. Wood JA, Davis JM, Smith JA, Nieman DC (1999) Exercise and cellular innate immune function. Med Sci Sports Exerc 31(1):57–66. doi: 10.1097/00005768-199901000-00011 CrossRefGoogle Scholar
  36. Zhang H, Park Y, Wu J, Chen X, Lee S, Yang J, Dellsperger KC, Zhang C (2009) Role of TNFα in vascular dysfunction. Clin Sci 116:219–230. doi: 10.1042/CS20080196 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Suzanne Maria Hurst
    • 1
    Email author
  • K. A. Lyall
    • 1
  • R. D. Hurst
    • 1
  • L. M. Stevenson
    • 1
  1. 1.Functional Food and Health GroupThe New Zealand Institute of Plant and Food Research Ltd.HamiltonNew Zealand

Personalised recommendations