Advertisement

Changes in interstitial noradrenaline, trapezius muscle activity and oxygen saturation during low-load work and recovery

  • Gerd M. FlodgrenEmail author
  • A. G. Crenshaw
  • M. Gref
  • M. Fahlström
Original Article

Abstract

Both physical as well as mental demands result in an increased activity in the sympathetic nervous system (SNS) with changes in blood-pressure and heart-rate. Through local release of catecholamines, e.g. noradrenaline (NAd) SNS exerts various actions at the muscle level. The aims of this study were to investigate the effects of low-load repetitive work alone and in combination with mental demands on local muscle interstitial noradrenaline concentration [NAd]i, muscle activity and oxygenation, assessed with microdialysis, surface electromyography, and near-infrared spectroscopy, respectively. Healthy females (n = 15) were exposed to (1) 30 min repetitive work (RW) and (2) 30 min repetitive work with superimposed mental load (RWML) on two different occasions. Muscle [NAd]i and muscle activity increased significantly in response to RW, but did not increase further during RWML. For RW, [NAd]i was found to be inversely correlated to muscle activity. Oxygenation decreased significantly during work, independently of occasion. Our findings indicate that low-load work causes significantly increased trapezius muscle [NAd]i in healthy females, and short periods of superimposed mental load do not add to this increase and further, that both muscle activity and oxygenation were unaffected by the superimposed mental load.

Keywords

Microdialysis Near-infrared spectroscopy Electromyography Mental load Subjective ratings Healthy females 

Notes

Acknowledgments

Special thanks are due to Margaretha Marklund, Per Gandal and Göran Sandström for qualified technical assistance, Ivana Kalecic for help with improving the HPLC-analysis, Fredrik Hellström for reading and commenting the manuscript and lastly to Kjell Karp for providing laboratory resources. The financial support of the Swedish Agency for Innovation Systems, VINNOVA (project no. 510240) is also gratefully acknowledged.

References

  1. Anderson EA, Wallin BG, Mark AL (1987) Dissociation of sympathetic nerve activity in arm and leg muscle during mental stress. Hypertension 9(6 Pt 2):III114–III119PubMedGoogle Scholar
  2. Ashina M, Stallknecht B, Bendtsen L et al (2002) In vivo evidence of altered skeletal muscle blood flow in chronic tension-type headache. Brain 125:320–326. doi: 10.1093/brain/awf029 PubMedCrossRefGoogle Scholar
  3. Bernard B (1997) Musculoskeletal disorders and workplace factors: a critical review of epidemiologic evidence for work related musculoskeletal disorders of the neck, upper extremity, and low back, 2nd edn. US Department of Health and Human Services, NIOSH, CincinnatiGoogle Scholar
  4. Blangsted AK, Søgaard K, Christensen H et al (2004) The effect of physical and psychosocial loads on the trapezius muscle activity during computer keying tasks and rest periods. Eur J Appl Physiol 91:253–258. doi: 10.1007/s00421-003-0979-z PubMedCrossRefGoogle Scholar
  5. Blangsted AK, Sjøgaard G, Madeleine P et al (2005) Voluntary low-force contractions elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography. J Electromyogr Kinesiol 15:138–148. doi: 10.1016/j.jelekin.2004.10.004 PubMedCrossRefGoogle Scholar
  6. Bongers PM, Ijmker S, van den Heuvel S et al (2006) Epidemiology of work related neck and upper limb problems: psychosocial and personal risk factors (Part I) and effective interventions from a bio behavioural perspective (Part II). J Occup Rehabil 16:279–302. doi: 10.1007/s10926-006-9044-1 PubMedCrossRefGoogle Scholar
  7. Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381PubMedGoogle Scholar
  8. Bosch T, de Looze MP, Kingma I, Visser B, van Dieën JH (2008) Electromyographical manifestations of muscle fatigue during different levels of simulated light manual assembly work. J Electromyogr Kinesiol. doi: 10.1016/j.jelekin
  9. Boushel R, Piantadosi CA (2000) Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand 168:615–622. doi: 10.1046/j.1365-201x.2000.00713.x PubMedCrossRefGoogle Scholar
  10. Bowman WC (1980) Effects of adrenergic activators and inhibitors on skeletal muscles. In: Szekeres L (ed) Adrenergic activators and inhibitors. Handbook of experimental pharmacology, vol 54/2. Springer, New York, pp 47–128Google Scholar
  11. Bruce S, Tack C, Patel J, Pacak K, Goldstein DS (2002) Local sympathetic function in human skeletal muscle and adipose tissue assessed by microdialysis. Clin Auton Res 12(1):13–19. doi: 10.1007/s102860200005 PubMedCrossRefGoogle Scholar
  12. Chaurasia CS (1999) In vivo microdialysis sampling: theory and applications. Biomed Chromatogr 13:317–332. doi: 10.1002/(SICI)1099-0801(199908)13:5<317::AID-BMC891>3.0.CO;2-I PubMedCrossRefGoogle Scholar
  13. Costa F, Christensen NJ, Farley G, Biaggioni I (2001) No modulates norepinephrine release in human skeletal muscle: implications for neural conditioning. Am J Physiol Regul Integr Comp Physiol 280(5):R1494–R1498PubMedGoogle Scholar
  14. Dela F, Stallknecht B, Biering-Sørensen F (2000) An intact central nervous system is not necessary for insulin-mediated increases in leg blood flow. Pflugers Arch 441:241–250. doi: 10.1007/s004240000444 PubMedCrossRefGoogle Scholar
  15. Esler M, Jennings G, Leonard P, Sacharias N, Burke F, Johns J, Blombery F (1984) Contribution of individual organs to total noradrenalin release in humans. Acta Physiol Scand Suppl 527:11–16PubMedGoogle Scholar
  16. Farina D, Fosci M, Merletti R (2002a) Motor unit recruitment strategies investigated by surface EMG variables. J Appl Physiol 92(1):235–247. doi: 10.1063/1.1481974 PubMedCrossRefGoogle Scholar
  17. Farina D, Madeleine P, Graven-Nielsen T, Merletti R, Arendt-Nielsen L (2002b) Standardising surface electromyogram recordings for assessment of activity and fatigue in the upper trapezius muscle. Eur J Appl Physiol 86(6):469–478. doi: 10.1007/s00421-001-0574-0 PubMedCrossRefGoogle Scholar
  18. Felici F, Quaresima V, Fattorini L, Sbriccoli P, Filligoi GC, Ferrari M (2009) Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercise. J Electromyogr Kinesiol 19(2):e1–e11. doi: 10.1016/j.jelekin.2007.07.010 PubMedCrossRefGoogle Scholar
  19. Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 29:463–487PubMedGoogle Scholar
  20. Flodgren GM, Alfredson H, Fahlström M et al (2005) Glutamate and prostaglandin E2 in the trapezius muscle of females with unspecific trapezius pain and controls. Eur J Pain 9:511–515. doi: 10.1016/j.ejpain.2004.11.004 PubMedCrossRefGoogle Scholar
  21. Flodgren GM, Hellström FB, Fahlström M et al (2006) Effects of 30 versus 60 min of low-load work on intramuscular lactate, pyruvate, glutamate, prostaglandin E(2) and oxygenation in the trapezius muscle of healthy females. Eur J Appl Physiol 97:557–565. doi: 10.1007/s00421-006-0216-7 PubMedCrossRefGoogle Scholar
  22. Frankenhaeuser M, Lundberg U (1977) The influence of cognitive set of performance and performance under different noise loads. Motiv Emot 1:139–149. doi: 10.1007/BF00998516 CrossRefGoogle Scholar
  23. Garde AH, Laursen B, Jörgensen AH et al (2002) Effects of mental and physical demands on heart rate variability during computer work. Eur J Appl Physiol 87:456–461. doi: 10.1007/s00421-002-0656-7 PubMedCrossRefGoogle Scholar
  24. Garde AH, Hansen AM, Jensen BR (2003) Physiological responses to four hours of low-level repetitive work. Scand J Work Environ Health 29:452–460PubMedGoogle Scholar
  25. Hansen J, Thomas GD, Harris SA, Parsons WJ, Victor RJ (1996) Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J Clin Invest 98(2):584–596. doi: 10.1172/JCI118826 PubMedCrossRefGoogle Scholar
  26. Hansen ÅM, Garde AH, Skovgaard LT et al (2001) Seasonal and biological variation of urinary epinephrine, noradrenalin, and cortisol in healthy women. Clin Chim Acta 309:25–35. doi: 10.1016/S0009-8981(01)00493-4 PubMedCrossRefGoogle Scholar
  27. Henneman E, Somjen G, Carpenter DO (1965) Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol 28:599–620PubMedGoogle Scholar
  28. Hermans V, Spaepen A (1995) Perceived discomfort and electromyographic activity of the upper trapezius while working at a VDT station. JOSE 1(3):208–214PubMedGoogle Scholar
  29. Hidaka O, Yanagi M, Tadaka K (2004) Mental stress-induced physiological changes in the human masseter muscle. J Dent Res 83:227–231. doi: 10.1177/154405910408300308 PubMedCrossRefGoogle Scholar
  30. Hjemdahl P (1993) Plasma catecholamines: analytical challenges and physiological limitations. Baillieres Clin Endocrinol Metab 7:307–353. doi: 10.1016/S0950-351X(05)80179-X PubMedCrossRefGoogle Scholar
  31. Hjemdahl P, Daleskog M, Kahan T (1979) Determination of plasma catecholamines by high-performance liquid chromatographic with electrochemical detection. Life Sci 25:131–138. doi: 10.1016/0024-3205(79)90384-9 PubMedCrossRefGoogle Scholar
  32. Holm S (1979) A simple sequential rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  33. Järvholm U, Palmerud G, Karlsson D, Herberts P, Kadefors R (1991) Intramuscular pressure and electromyography in four shoulder muscles. J Orthop Res 9(4):609–619. doi: 10.1002/jor.1100090418 PubMedCrossRefGoogle Scholar
  34. Jensen BR, Schibye B, Sogaard K, Simonsen EB, Sjogaard G (1993) Shoulder muscle load and muscle fatigue among industrial sewing-machine operators. Eur J Appl Physiol Occup Physiol 67:467–475. doi: 10.1007/BF00376465 PubMedCrossRefGoogle Scholar
  35. Johansson H, Arendt-Nilsson L, Bergenheim M (2003) An integrated model for chronic work related myalgia “Brussels model”. In: Johansson H, Windhorst U, Djupsjöbacka M, Passatore M et al (eds) Chronic work-related myalgia. Neuromuscular mechanisms behind work-related chronic muscle pain syndromes. Gävle University Press, GävleGoogle Scholar
  36. Karamouzis M, Langberg H, Skovgaard D, Bülow J, Kjaer M, Saltin B (2001) In situ microdialysis of intramuscular prostaglandin and thromboxane in contracting skeletal muscle in humans. Acta Physiol Scand 171(1):71–76. doi: 10.1046/j.1365-201x.2001.171001071.x PubMedCrossRefGoogle Scholar
  37. Khan MH, Sinoway LI, MacLean DA (2002) Effects of graded LBNP on MSNA and interstitial norepinephrine. Am J Physiol Heart Circ Physiol 283(5):H2038–H2044PubMedGoogle Scholar
  38. Krantz G, Forsman M, Lundberg U (2004) Consistency in physiological stress responses and electromyographic activity during induced stress exposure in women and men. Integr Physiol Behav Sci 39(2):105–118. doi: 10.1007/BF02734276 PubMedCrossRefGoogle Scholar
  39. Larsson SE, Larsson R, Zhang Q, Cai H, Oberg PA (1995) Effects of psychophysiological stress on trapezius muscles blood flow and electromyography during static load. Eur J Appl Physiol Occup Physiol 71(6):493–498. doi: 10.1007/BF00238550 PubMedCrossRefGoogle Scholar
  40. Larsson R, Oberg PA, Larsson SE (1999) Changes of trapezius muscle blood flow and electromyography in chronic neck pain due to trapezius myalgia. Pain 79(1):45–50. doi: 10.1016/S0304-3959(98)00144-4 PubMedCrossRefGoogle Scholar
  41. Lavoie JL, Trudeau F, Beliveau L (2000) Effect of blood flow and muscle contraction on noradrenaline spillover in the canin gracilis muscle. Can J Physiol Pharmacol 78:75–80. doi: 10.1139/cjpp-78-1-75 PubMedCrossRefGoogle Scholar
  42. Leistad RB, Stovner LJ, White LR, Nilsen KB, Westgaard RH, Sand T (2007) Noradrenaline and cortisol changes in response to low-grade cognitive stress differ in migraine and tension-type headache. J Headache Pain 8(3):157–166. doi: 10.1007/s10194-007-0384-9 PubMedCrossRefGoogle Scholar
  43. Lindman R, Eriksson A, Thornell LE (1991) Fiber type composition of the human female trapezius muscle: enzyme-histochemical characteristics. Am J Anat 190(4):385–389. doi: 10.1002/aja.1001900406 PubMedCrossRefGoogle Scholar
  44. Lindqvist M, Melcher A, Hjemdahl P (1999) Flow dependence of forearm noradrenaline overflow, as assessed during mental stress and sodium nitroprusside infusion. J Hypertens 17:91–97. doi: 10.1097/00004872-199917010-00014 PubMedCrossRefGoogle Scholar
  45. Liu Z, Barnes SA, Sokolnicki LA, Snyder EM, Johnson BD, Turner ST, Joyner MJ, Eisenach JH (2006) Beta-2 adrenergic receptor polymorphisms and the forearm blood flow response to mental stress. Clin Auton Res 16(2):105–112. doi: 10.1007/s10286-006-0329-4 PubMedCrossRefGoogle Scholar
  46. Lundberg U (2005) Stress hormones in health and illness: the roles of work and gender. Psychoneuroendocrinology 30(10):1017–1021. doi: 10.1016/j.psyneuen.2005.03.014 PubMedCrossRefGoogle Scholar
  47. Lundberg U, Kadefors R, Melin B, Palmerud G, Hassmen P, Engstrom M, Dohns IE (1994) Psychophysiological stress and EMG activity of the trapezius muscle. Int J Behav Med 1(4):354–370. doi: 10.1207/s15327558ijbm0104_5 PubMedCrossRefGoogle Scholar
  48. Lundberg U, Forsman M, Zachau G, Eklof M, Palmerud G, Kadefors R (2002) Effects of experimentally induced mental and physical stress on motor unit recruitment in the trapezius muscle. Work Stress 16(2):166–178. doi: 10.1080/02678370210136699 CrossRefGoogle Scholar
  49. MacLean DA, Bangsbo J, Saltin B (1999) Skeletal muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87:1483–1489PubMedGoogle Scholar
  50. Mancini DM, Bolinger L, Li H et al (1994) Validation of near-infrared spectroscopy in humans. J Appl Physiol 77:2740–2747PubMedGoogle Scholar
  51. Passatore M, Roatta S (2006) Influence of sympathetic nervous system on sensorimotor function: whiplash associated disorders (WAD) as a model. Eur J Appl Physiol 98(5):423–449. doi: 10.1007/s00421-006-0312-8 PubMedCrossRefGoogle Scholar
  52. Passatore M, Roatta S (2007) Modulation operated by the sympathetic nervous system on jaw reflexes and masticatory movement. Arch Oral Biol 52(4):343–346. doi: 10.1016/j.archoralbio.2006.11.013 PubMedCrossRefGoogle Scholar
  53. Rissén D, Melin B, Sandsjo L, Dohms I, Lundberg U (2000) Surface EMG and psychophysiological stress reactions in women during repetitive work. Eur J Appl Physiol 83:215–222. doi: 10.1007/s004210000281 PubMedCrossRefGoogle Scholar
  54. Roatta S, Arendt-Nielsen L, Farina D (2008) Sympathetic-induced changes in discharge rate and spike-triggered average twitch torque of low-threshold motor units in humans. J Physiol 586:5561–5579PubMedCrossRefGoogle Scholar
  55. Røe C, Knardahl S (2002) Muscle activity and blood flux during standardised data-terminal work. Int J Ind Ergon 30:251–264. doi: 10.1016/S0169-8141(02)00129-4 CrossRefGoogle Scholar
  56. Rosdahl H, Ungerstedt U, Jorfeldt L, Henriksson J (1993) Interstitial glucose and lactate balance in human skeletal muscle and adipose tissue studied by microdialysis. J Physiol 471:637–657PubMedGoogle Scholar
  57. Rosendal L, Blangsted AK, Kristiansen J, Søgaard K, Langberg H, Sjøgaard G, Kjaer M (2004a) Interstitial muscle lactate, pyruvate and potassium dynamics in the trapezius muscle during repetitive low-force arm movements, measured with microdialysis. Acta Physiol Scand 182(4):379–388. doi: 10.1111/j.1365-201X.2004.01356.x PubMedCrossRefGoogle Scholar
  58. Rosendal L, Larsson B, Kristiansen J, Peolsson M, Søgaard K, Kjaer M, Sørensen J, Gerdle B (2004b) Increase in muscle nociceptive substances and anaerobic metabolism in patients with trapezius myalgia: microdialysis in rest and during exercise. Pain 112(3):324–334. doi: 10.1016/j.pain.2004.09.017 PubMedCrossRefGoogle Scholar
  59. Saltin B, Rådegran G, Koskolou MD et al (1998) Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand 162:421–436. doi: 10.1046/j.1365-201X.1998.0293e.x PubMedCrossRefGoogle Scholar
  60. Savard GS, Strange S, Kiens B, Richter EA, Christensen NJ, Saltin B (1987) Noradrenaline spillover during exercise in active versus resting skeletal muscle in man. Acta Physiol Scand 131:507–515. doi: 10.1111/j.1748-1716.1987.tb08270.x PubMedCrossRefGoogle Scholar
  61. Scheller D, Kolb J (1991) The internal reference technique in microdialysis: a practical approach to monitoring dialysis efficiency and to calculating tissue concentration from dialysate samples. J Neurosci Methods 40(1):31–38. doi: 10.1016/0165-0270(91)90114-F PubMedCrossRefGoogle Scholar
  62. Seals DR, Enoka RM (1989) Sympathetic activation is associated with increases in EMG during fatiguing exercise. J Appl Physiol 66(1):88–95PubMedGoogle Scholar
  63. Sjøgaard G, Søgaard K (1998) Muscle injury in repetitive motion disorders. Clin Orthop Relat Res (351):21–31Google Scholar
  64. Sluiter JK, Frings-Dresden MHW, Meijman TF et al (2000) Reactivity and recovery from different types of work measured by catecholamines and cortisol: as systematic literature overview. Occup Environ Med 57:298–315. doi: 10.1136/oem.57.5.298 PubMedCrossRefGoogle Scholar
  65. Søgaard K, Blangsted AK, Jørgesen AG, Madeleine P, Sjøgaard G (2003) Evidence of long term muscle fatigue following prolonged intermittent contractions based on mechano- and electromyograms. J Electromyogr Kinesiol 13:441–450. doi: 10.1016/S1050-6411(03)00075-0 PubMedCrossRefGoogle Scholar
  66. Stallknecht B, Lorentzon J, Enevoldsen LH et al (2001) Role of the sympathoadrenergic system in adipose tissue metabolism during exercise in humans. J Physiol 536:283–294. doi: 10.1111/j.1469-7793.2001.00283.x PubMedCrossRefGoogle Scholar
  67. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–661. doi: 10.1037/h0054651 CrossRefGoogle Scholar
  68. Tokunaga N, Yamazaki T, Akiyama T, Sano S, Mori H (2003) In vivo monitoring of norepinephrine and its metabolites in skeletal muscle. Neurochem Int 42(6):573–580. doi: 10.1016/S0197-0186(03)00064-0 CrossRefGoogle Scholar
  69. Ungerstedt U (1991) Microdialysis-principles and applications for studies in animals and man. J Intern Med 230:365–373PubMedCrossRefGoogle Scholar
  70. Van Beekvelt MC, Colier WN, Wevers RA et al (2001) Performance of near-infrared spectroscopy in measuring local O (2) consumption and blood flow in skeletal muscle. J Appl Physiol 90:511–519PubMedGoogle Scholar
  71. Waersted M, Westgaard RH (1996) Attention-related muscle activity in different body regions during VDU-work with minimal physical activity. Ergonomics 39(4):661–676PubMedGoogle Scholar
  72. Wasmund WL, Westerholm EC, Watenpaug DE, Wasmund SL, Smith ML (2002) Interactive effects of mental and physical stress on cardiovascular control. J Appl Physiol 92:1828–1834PubMedGoogle Scholar
  73. Yamazaki T, Akiyami T, Shindo T (1995) Routine high-performance liquid chromatographic determination of myocardial interstitial noradrenalin. J Chromatogr B Biomed Appl 670:328–331. doi: 10.1016/0378-4347(95)00185-9 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gerd M. Flodgren
    • 1
    • 2
    • 4
    Email author
  • A. G. Crenshaw
    • 1
  • M. Gref
    • 3
  • M. Fahlström
    • 2
    • 5
  1. 1.Centre for Musculoskeletal ResearchUniversity of GävleUmeåSweden
  2. 2.Department of Surgical and Perioperative Sciences, Sports Medicine UnitUmeå UniversityUmeåSweden
  3. 3.Department of Surgical and Perioperative Sciences, Clinical Physiology UnitUmeå UniversityUmeåSweden
  4. 4.Institute of Health and SocietyNewcastle UniversityNewcastle upon TyneUK
  5. 5.Department of Community Medicine and Rehabilitation, Rehabilitation MedicineUmeå UniversityUmeåSweden

Personalised recommendations