Advertisement

European Journal of Applied Physiology

, Volume 107, Issue 1, pp 11–19 | Cite as

Effect of exercise-induced muscle damage on ventilatory and perceived exertion responses to moderate and severe intensity cycle exercise

  • Rosemary C. DaviesEmail author
  • Ann V. Rowlands
  • Roger G. Eston
Original Article

Abstract

This study examined the effect of exercise-induced muscle damage (EIMD) on ventilatory and perceived exertion responses to cycle exercise. Ten healthy, physically active men cycled for 6 min at moderate intensity and to exhaustion at severe intensity before and 48 h after eccentric exercise (100 squats with a load corresponding to 70% of body mass). Changes in ventilation and ratings of perceived exertion (RPE) were calculated for each individual and expressed against time (moderate and severe exercise) and as a percentage of time to exhaustion (severe exercise). Ventilation increased during moderate exercise at 48 h (\( \dot{V}_{\text{E}} \); 34.5 ± 5.0 to 36.3 ± 3.8 l min−1, P < 0.05) but increases in RPE were not significant. During severe exercise at 48 h, time to exhaustion (TTE) was reduced and \( \dot{V}_{\text{E}} \) (87.1 ± 14.1 to 93.8 ± 11.7 l min−1) and RPE (15.5 ± 1.3 to 16.1 ± 1.4) were elevated (P < 0.05). When expressed as a percentage of TTE, the differences in ventilation and RPE values disappeared. Findings indicate that the augmented ventilatory response to cycle exercise following EIMD may be an important cue in informing effort perception during high-intensity exercise but not during moderate-intensity exercise.

Keywords

Exercise-induced muscle damage Delayed onset muscle soreness Ventilation Perceived exertion 

References

  1. Allen GM, Gandevia SC, McKenzie DK (1995) Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 18:593–600. doi: 10.1002/mus.880180605 PubMedCrossRefGoogle Scholar
  2. Åstrand PO, Ryhming I (1954) A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J Appl Physiol 7:218–221PubMedGoogle Scholar
  3. Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas-exchange. J Appl Physiol 60:2020–2027PubMedGoogle Scholar
  4. Borg G (1998) Borg’s perceived exertion and pain scales. Hum Kinet, LeedsGoogle Scholar
  5. Braun WA, Dutto DJ (2003) The effects of a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48 h later. Eur J Appl Physiol 90:29–34. doi: 10.1007/s00421-003-0857-8 PubMedCrossRefGoogle Scholar
  6. Byrne C, Eston R (2002) The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. J Sports Sci 20:417–425. doi: 10.1080/026404102317366672 PubMedCrossRefGoogle Scholar
  7. Byrne C, Eston RG, Edwards RHT (2001) Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scand J Med Sci Sports 11:134–140. doi: 10.1046/j.1524-4725.2001.110302.x PubMedCrossRefGoogle Scholar
  8. Chen TC, Nosaka K, Tu JH (2007) Changes in running economy following downhill running. J Sports Sci 25:55–63. doi: 10.1080/02640410600718228 PubMedCrossRefGoogle Scholar
  9. Chen TC, Nosaka K, Wu CC (2008) Effects of a 30-min running performed daily after downhill running on recovery of muscle function and running economy. J Sci Med Sport 11:271–279. doi: 10.1016/j.jsams.2007.02.015 PubMedCrossRefGoogle Scholar
  10. Crewe H, Tucker R, Noakes TD (2008) The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions. Eur J Appl Physiol 103:569–577. doi: 10.1007/s00421-008-0741-7 PubMedCrossRefGoogle Scholar
  11. Davies RC, Eston RG, Poole DC, Rowlands AV, Dimenna F, Wilkerson DP, Twist C, Jones AM (2008) The effect of eccentric exercise-induced muscle damage on the dynamics of muscle oxygenation and pulmonary oxygen uptake. J Appl Physiol 105:1387–1388. doi: 10.1152/japplphysiol.90743.2008 CrossRefGoogle Scholar
  12. Eston R, Faulkner J, St Clair Gibson A, Noakes T, Parfitt G (2007) The effect of antecedent fatiguing activity on the relationship between perceived exertion and physiological activity during a constant load exercise task. Psychophysiology 44:779–786. doi: 10.1111/j.1469-8986.2007.00558.x PubMedCrossRefGoogle Scholar
  13. Faulkner J, Parfitt G, Eston R (2008) The rating of perceived exertion during competitive running scales with time. Psychophysiology 45:977–985. doi: 10.1111/j.1469-8986.2008.00712.x PubMedCrossRefGoogle Scholar
  14. Gleeson M, Blannin AK, Zhu B, Brooks S, Cave R (1995) Cardiorespiratory, hormonal and haematological responses to submaximal cycling performed 2 days after eccentric or concentric exercise bouts. J Sports Sci 13:471–479. doi: 10.1080/02640419508732264 PubMedCrossRefGoogle Scholar
  15. Hamill J, Freedson PS, Clarkson PM, Braun B (1991) Muscle soreness during running—biomechanical and physiological considerations. Int J Sport Biomech 7:125–137Google Scholar
  16. Hampson DB, St Clair Gibson A, Lambert MI, Noakes TD (2001) The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med 31:935–952. doi: 10.2165/00007256-200131130-00004 PubMedCrossRefGoogle Scholar
  17. Haouzi P, Chenuel B, Huszczuk A (2004) Sensing vascular distension in skeletal muscle by slow conducting afferent fibers: neurophysiological basis and implication for respiratory control. J Appl Physiol 96:407–418. doi: 10.1152/japplphysiol.00597.2003 PubMedCrossRefGoogle Scholar
  18. Hotta N, Sato K, Sun Z, Katayama K, Akima H, Kondo T, Ishida K (2006) Ventilatory and circulatory responses at the onset of exercise after eccentric exercise. Eur J Appl Physiol 97:598–606. doi: 10.1007/s00421-006-0212-y PubMedCrossRefGoogle Scholar
  19. Jameson C, Ring C (2000) Contributions of local and central sensations to the perception of exertion during cycling: effects of work rate and cadence. J Sports Sci 18:291–298. doi: 10.1080/026404100365027 PubMedCrossRefGoogle Scholar
  20. Jones A, Vanhatalo A, Doust J (2009) Aerobic exercise performance. In: Eston R, Reilly T (eds) Kinanthropometry and exercise physiology laboratory manual: tests procedures and data. Volume 2 physiology. Routledge, London, pp 272–307Google Scholar
  21. Joseph T, Johnson B, Battista RA, Wright G, Dodge C, Porcari JP, de Koning JJ, Foster C (2008) Perception of fatigue during simulated competition. Med Sci Sports Exerc 40:381–386. doi: 10.1249/mss.0b013e31815a83f6 PubMedCrossRefGoogle Scholar
  22. Kano Y, Padilla DJ, Behnke BJ, Hageman KS, Musch TI, Poole DC (2005) Effects of eccentric exercise on microcirculation and microvascular oxygen pressures in rat spinotrapezius muscle. J Appl Physiol 99:1516–1522. doi: 10.1152/japplphysiol.00069.2005 PubMedCrossRefGoogle Scholar
  23. Laaksonen MS, Kivela R, Kyrolainen H, Sipila S, Selanne H, Lautamaki R, Nuutila P, Knuuti J, Kalliokoski KK, Komi PV (2006) Effects of exhaustive stretch-shortening cycle exercise on muscle blood flow during exercise. Acta Physiol (Oxf) 186:261–270. doi: 10.1111/j.1748-1716.2006.01532.x CrossRefGoogle Scholar
  24. Marcora SM, Bosio A (2007) Effect of exercise-induced muscle damage on endurance running performance in humans. Scand J Med Sci Sports 17:662–671PubMedCrossRefGoogle Scholar
  25. Mihevic PM (1981) Sensory cues for perceived exertion: a review. Med Sci Sports Exerc 13:150–163PubMedGoogle Scholar
  26. Moysi JS, Garcia-Romero JC, Alvero-Cruz JR, Vicente-Rodriguezl G, Ara I, Dorado C, Calbet JAL (2005) Effects of eccentric exercise on cycling efficiency. Can J Appl Physiol 30:259–275PubMedGoogle Scholar
  27. Paschalis V, Koutedakis Y, Baltzopoulos V, Mougios V, Jamurtas AZ, Theoharis V (2005) The effects of muscle damage on running economy in healthy males. Int J Sports Med 26:827–831. doi: 10.1055/s-2005-837461 PubMedCrossRefGoogle Scholar
  28. Proske U, Gregory JE, Morgan DL, Percival P, Weerakkody NS, Canny BJ (2004) Force matching errors following eccentric exercise. Hum Mov Sci 23:365–378. doi: 10.1016/j.humov.2004.08.012 PubMedCrossRefGoogle Scholar
  29. Robertson RJ, Noble BJ (1997) Perception of physical exertion: methods, mediators, and applications. Exerc Sport Sci Rev 25:407–452. doi: 10.1249/00003677-199700250-00017 PubMedCrossRefGoogle Scholar
  30. Romer LM, Polkey MI (2008) Exercise-induced respiratory muscle fatigue: implications for performance. J Appl Physiol 104:879–888. doi: 10.1152/japplphysiol.01157.2007 PubMedCrossRefGoogle Scholar
  31. Schneider DA, Berwick JP, Sabapathy S, Minahan CL (2007) Delayed onset muscle soreness does not alter O2 uptake kinetics during heavy-intensity cycling in humans. Int J Sports Med 28:550–556. doi: 10.1055/s-2007-964840 PubMedCrossRefGoogle Scholar
  32. Scott KE, Rozenek R, Russo AC, Crussemeyer JA, Lacourse MG (2003) Effects of delayed onset muscle soreness on selected physiological responses to submaximal running. J Strength Cond Res 17:652–658. doi: 10.1519/1533-4287(2003)017<0652:EODOMS>2.0.CO;2 PubMedCrossRefGoogle Scholar
  33. Semmler JG, Tucker KJ, Allen TJ, Proske U (2007) Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles. J Appl Physiol 103:979–989. doi: 10.1152/japplphysiol.01310.2006 PubMedCrossRefGoogle Scholar
  34. St Clair Gibson A, Baden DA, Lambert MI, Lambert EV, Harley YX, Hampson D, Russell VA, Noakes TD (2003) The conscious perception of the sensation of fatigue. Sports Med 33:167–176. doi: 10.2165/00007256-200333030-00001 PubMedCrossRefGoogle Scholar
  35. Stevens JP (2002) Applied multivarate statistics for the social sciences. Erlbaum, New JerseyGoogle Scholar
  36. Twist C, Eston R (2005) The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol 94:652–658. doi: 10.1007/s00421-005-1357-9 PubMedCrossRefGoogle Scholar
  37. Twist C, Eston RG (2009) The effect of exercise-induced muscle damage on perceived exertion and cycling endurance performance. Eur J Appl Physiol 105:559–567. doi: 10.1007/s00421-008-0935-z PubMedCrossRefGoogle Scholar
  38. Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27:43–59. doi: 10.2165/00007256-199927010-00004 PubMedCrossRefGoogle Scholar
  39. Watt B, Grove R (1993) Perceived exertion. Antecedents and applications. Sports Med 15:225–241. doi: 10.2165/00007256-199315040-00002 PubMedCrossRefGoogle Scholar
  40. Whipp BJ, Davis JA, Torres F et al (1981) A test to determine parameters of aerobic function during exercise. J Appl Physiol 50(1):217–221PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Rosemary C. Davies
    • 1
    Email author
  • Ann V. Rowlands
    • 1
  • Roger G. Eston
    • 1
  1. 1.School of Sport and Health SciencesUniversity of ExeterExeterUK

Personalised recommendations