European Journal of Applied Physiology

, Volume 106, Issue 6, pp 785–790

Association between ACE D allele and elite short distance swimming

  • Aldo Matos Costa
  • António José Silva
  • Nuno Domingos Garrido
  • Hugo Louro
  • Ricardo Jacó de Oliveira
  • Luiza Breitenfeld
Original Article

Abstract

The influence of ACE gene on athletic performance has been widely explored, and most of the published data refers to an I/D polymorphism leading to the presence (I allele) or absence (D allele) of a 287-bp sequence in intron 16, determining ACE activity in serum and tissues. A higher I allele frequency has been reported among elite endurance athletes, while the D allele was more frequent among those engaged in more power-orientated sports. However, on competitive swimming, the reproducibility of such associations is controversial. We thus compared the ACE genotype of elite swimmers with that of non-elite swimming cohort and of healthy control subjects. We thus sought an association of the ACE genotype of elite swimmers with their competitive distance. 39 Portuguese Olympic swimming candidates were classified as: short (<200 m) and middle (400–1,500 m) distance swimmers, respectively. A group of 32 non-elite swimmers were studied and classified as well, and a control group (n = 100) was selected from the Portuguese population. Chelex 100 was used for DNA extraction and genotype was determined by PCR-RFLP methods. We found that ACE genotype distribution and allelic frequency differs significantly by event distance only among elite swimmers (P ≤ 0.05). Moreover, the allelic frequency of the elite short distance swimmers differed significantly from that of the controls (P = 0.021). No associations were found between middle distance swimmers and controls. Our results seem to support an association between the D allele and elite short distance swimming.

Keywords

Genetic polymorphisms Angiotensin converting enzyme Sports performance Swimming 

References

  1. Alvarez R, Terrados N, Ortolano R, Iglesias-Cubero G, Reguero J, Batalla A, Cortina A, Fernández-García B, Rodríguez C, Braga S, Alvarez V, Coto E (2000) Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol 82:117–120. doi:10.1007/s004210050660 PubMedCrossRefGoogle Scholar
  2. Cambien F, Costerousse O, Tiret L, Poirier O, Lecerf L, Gonzales M, Evans A, Arveiler D, Cambou J, Luc G (1994) Plasma level and gene polymorphism of angiotensinconverting enzyme in relation to myocardial infarction. Circulation 90:669–676PubMedGoogle Scholar
  3. Cerit M, Colakoglu M, Erdogan M, Berdeli A, Cam F (2006) Relationship between ACE genotype and short duration aerobic performance development. Eur J Appl Physiol 98:461–465. doi:10.1007/s00421-006-0286-6 PubMedCrossRefGoogle Scholar
  4. Collins M, Xenophontos S, Carilou M, Mokone G, Hudson D, Anastasiades L, Noakes T (2004) The ACE gene and endurance performance during the South African Ironman triathlons. Med Sci Sports Exerc 36(8):1314–1320. doi:10.1249/01.MSS.0000135779.41475.42 PubMedCrossRefGoogle Scholar
  5. Costerousse O, Allegrini J, Lopez M, Alhenc-Gelas F (1993) Angiotensin I-converting enzyme in human circulating mononuclear cells: genetic polymorphism of expression in T-lymphocytes. Biochem J 290(Pt 1):33–40PubMedGoogle Scholar
  6. Danser A, Schalekamp M, Bax W, Van-den-Brink A, Saxena P, Riegger G (1995) Angiotensin-converting enzyme in the human heart: effect of the deletion/insertion polymorphism. Circulation 92:1387–1388PubMedGoogle Scholar
  7. Day S, Gohlke P, Dhamrait S, Williams A (2007) No correlation between circulating ACE activity and VO2max or mechanical efficiency in women. Eur J Appl Physiol 99(1):11–18. doi:10.1007/s00421-006-0309-3 PubMedCrossRefGoogle Scholar
  8. Dragovic T, Minhall R, Jackman HL, Wang L-X, Erdos EG (1996) Kininase II-type enzymes: their putative role in muscle energy metabolism. Diabetes 45(Suppl 1):S34–S37PubMedGoogle Scholar
  9. Dzau VJ (1988) Circulating vs local renin-angiotensin system in cardiovascular homeostasis. Circulation 77(Suppl 1):I4–I13PubMedGoogle Scholar
  10. Fatini C, Guazzelli R, Manetti P, Battaglini B, Gensini F, Vono R, Toncelli L, Zilli P, Capalbo A, Abbate R, Gensini GF, Galanti G (2000) RAS genes influence exercise-induced left ventricular hypertrophy: an elite athletes study. Med Sci Sports Exerc 32(11):1868–1872. doi:10.1097/00005768-200011000-00008 PubMedCrossRefGoogle Scholar
  11. Fischer M, Baessler A, Schunkert H (2002) Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res 53(3):672–677. doi:10.1016/S0008-6363(01)00479-5 PubMedCrossRefGoogle Scholar
  12. Folland J, Leach B, Little T, Hawker K, Myerson S, Montgomery H, Jones D (2000) Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload. Exp Physiol 85(5):575–579. doi:10.1017/S0958067000020571 PubMedCrossRefGoogle Scholar
  13. Gayagay G, Yu B, Hambly B, Boston T, Hahn A, Celermajer D, Trent R (1998) Elite endurance athletes and the ACE I allele: the role of genes in athletic performance. Hum Genet 103(1):48–50. doi:10.1007/s004390050781 PubMedCrossRefGoogle Scholar
  14. Hagberg JM, Ferrell RE, McCole SD, Wilund KR, Moore GE (1998) VO2max is associated with ACE genotype in postmenopausal women. J Appl Physiol 85(5):1842–1846PubMedGoogle Scholar
  15. Hagberg JM, McCole SD, Brown MD, Ferrell RE, Wilund KR, Huberty A, Douglass LW, Moore GE (2002) ACE insertion/deletion polymorphism and submaximal exercise hemodynamics in post menopausal women. J Appl Physiol 92(3):1083–1088PubMedGoogle Scholar
  16. Hernandez D, De la Rosa A, Barragan A, Barrios Y, Salido E, Torres A, Martín B, Laynez I, Duque A, De Vera A, Lorenzo V, González A (2003) The ACE/DD genotype is associated with the extent of exercise-induced left ventricular growth in endurance athletes. J Am Coll Cardiol 42:527–532. doi:10.1016/S0735-1097(03)00642-9 PubMedCrossRefGoogle Scholar
  17. Jonsson JR, Game PA, Head RJ, Frewin DB (1994) The expression and localisation of the angiotensin-converting enzyme mRNA in human adipose tissue. Blood Press 3:72–75. doi:10.3109/08037059409101524 PubMedCrossRefGoogle Scholar
  18. Kasikcioglu E, Kayserilioglu A, Ciloglu F, Akhan H, Oflaz H, Yildiz S, Peker I (2004) Angiotensin converting enzyme gene polymorphism, left ventricular remodeling, and exercise capacity in strength-trained athletes. Heart Vessels 19:287–293. doi:10.1007/s00380-004-0783-7 PubMedCrossRefGoogle Scholar
  19. Ledru F, Blanchard D, Battaglia S, Jeunemaitre X, Courbon D, Guize L, Germonprez J-L, Ducimetiere P, Diébold B (1998) Relation between severity of coronary artery disease, left ventricular function and myocardial infarction, and influence of the ACE I/D gene polymorphism. Am J Cardiol 82(2):160–165. doi:10.1016/S0002-9149(98)00304-X PubMedCrossRefGoogle Scholar
  20. Linz W, Scholkens BA (1992) A specific B2-bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol 105:771–772PubMedGoogle Scholar
  21. Liu Y, Leri A, Li B et al (1998) Angiotensin II stimulation in vitro induces hypertrophy of normal and postinfarcted ventricular myocytes. Circ Res 82:1145–1159PubMedGoogle Scholar
  22. Lucia A, Gomez-Gallego F, Chicharro J, Hoyos J, Celaya K, Cordova A, Villa G, Alonso J, Barriopedro M, Perez M, Earnest C (2005) Is there no association between ACE and CKMM polymorphisms and cycling performance status during 3-weeks races? Int J Sports Med 26(6):442–447. doi:10.1055/s-2004-821108 PubMedCrossRefGoogle Scholar
  23. Montgomery HE, Clarkson P, Dollery CM, Prasad K, Losi M-A, Hemingway H, Statters D, Jubb M, Girvain M, Varnava A, World M, Deanfield J, Talmud P, McEwan JR, McKenna WJ, Humphries S (1997) Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 96:741–747PubMedGoogle Scholar
  24. Montgomery H, Clarkson P, Barnard M, Bell J, Brynes A, Dollery C, Hajnal J, Hemingway H, Mercer D, Jarman P, Marshall R, Prasad K, Rayson M, Saeed N, Talmud P, Thomas L, Jubb M, World M, Humphries S (1999) Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training. Lancet 353(9152):541–545. doi:10.1016/S0140-6736(98)07131-1 PubMedCrossRefGoogle Scholar
  25. Moran C, Scott R, Wilson R, Georgiades E, Goodwin W, Wolde B, Pitsiladis Y (2004) Increased frequency of an ACE polymorphism in Ethiopian elite marathon runners. Med Sci Sports Exerc 36(5):S259. doi:10.1097/00005768-200405001-01240 Google Scholar
  26. Murphey LJ, Gainer JV, Vaughan DE, Brown NJ (2000) Angiotensin-converting enzyme insertion/deletion polymorphism modulates the human in vivo metabolism of bradykinin. Circulation 102:829–832PubMedGoogle Scholar
  27. Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H (1999) Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol 87(4):1313–1316PubMedGoogle Scholar
  28. Nazarov I, Woods D, Montgomery H, Shneider O, Kazakov V, Tomilin N, Rogozkin V (2001) The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet 9(10):797–801. doi:10.1038/sj.ejhg.5200711 PubMedCrossRefGoogle Scholar
  29. Pescatello L, Kostek M, Gordish-dressman H, Thompson P, Seip R, Price T, Angelopoulos T, Clarkson P, Gordon P, Moyna N, Visich P, Zoeller R, Devaney J, Hoffman E (2006) ACE ID genotype and the muscle strength and size response to unilateral resistance training. Med Sci Sports Exerc 38(6):1074–1081. doi:10.1249/01.mss.0000222835.28273.80 PubMedCrossRefGoogle Scholar
  30. Rankinen T, Perusse L, Gagnon J, Chagnon Y, Leon A, Skinner J, Wilmore J, Rao D, Bouchard C (2000a) Angiotensin-converting enzyme ID polymorphism and fitness phenotype in the Heritage Family Study. J Appl Physiol 88(3):1029–1035PubMedGoogle Scholar
  31. Rankinen T, Wolfarth B, Simoneau JA, Maier-Lenz D, Rauramaa R, Rivera MA, Boulay MR, Chagnon YC, Perusse L, Keul J, Bouchard C (2000b) No association between angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol 88:1571–1575PubMedGoogle Scholar
  32. Reneland R, Lithel H (1994) Angiotensin-converting enzyme in human skeletal muscle: a simple in vitro assay of activity in needle biopsy specimens. Scand J Clin Lab Invest 54:105–111. doi:10.3109/00365519409086516 PubMedCrossRefGoogle Scholar
  33. Rieder M, Taylor S, Clark A, Nickerson D (1999) Sequence variation in the human angiotesin converting enzyme. Nat Genet 22:59–62. doi:10.1038/8760 PubMedCrossRefGoogle Scholar
  34. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the variance of serum enzyme levels. J Clin Invest 86(4):1343–1346. doi:10.1172/JCI114844 PubMedCrossRefGoogle Scholar
  35. Scott R, Moran C, Wilson R, Onywera V, Boit M, Goodwin W, Gohlke P, Payne J, Montgomery H, Pitsiladis Y (2005) No association between Angiotensin Converting Enzyme (ACE) gene variation and endurance athlete status in Kenyans. Comp Biochem Physiol A 141(2):169–175. doi:10.1016/j.cbpb.2005.05.001 CrossRefGoogle Scholar
  36. Taylor R, Mamotte C, Fallon K, Bockxmeer F (1999) Elite athletes and the gene for angiotensin-converting enzyme. J Appl Physiol 87(3):1035–1037PubMedGoogle Scholar
  37. Thomis MA, Huygens W, Heuninckx S, Chagnon M, Maes HH, Claessens A, Vlietinck R, Bouchard C, Beunen GP (2004) Exploration of myostatin polymorphism and the angiotensin-converting enzyme insertion/deletion genotype in responses of human muscle to strength training. Eur J Appl Physiol 92:267–274. doi:10.1007/s00421-004-1093-6 PubMedCrossRefGoogle Scholar
  38. Tiret L, Rigat B, Visvikis S, Breda C, Corvol P, Cambien F, Soubrier F (1992) Evidence, from combined segregation, and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 51(1):197–205PubMedGoogle Scholar
  39. Tsianos G, Sanders J, Dhamrait S, Humphries S, Grant S, Montgomery H (2004) The ACE gene polymorphism and elite endurance swimming. Eur J Appl Physiol 93(3):360–362Google Scholar
  40. Walsh P, Metzger D, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4):506–513PubMedGoogle Scholar
  41. Williams AG, Rayson MP, Jubb M, Word M, Wood DR, Hayward M, Martin J, Humphriest SE (2000) The ACE gene and muscle performance. Nature 403:614. doi:10.1038/47534 PubMedCrossRefGoogle Scholar
  42. Williams AG, Day SH, Folland JP, Gohlke P, Dhamrait S, Montgomery HE (2005) Circulating angiotensin converting enzyme activity is correlated with muscle strength. Med Sci Sports Exerc 37:944–948PubMedGoogle Scholar
  43. Woods DR, Humphries SE, Montgomery HE (2000) The ACE I/D Polymorphism and Human Physical Performance. Trends Endocrinol Metab 11:416–420. doi:10.1016/S1043-2760(00)00310-6 PubMedCrossRefGoogle Scholar
  44. Woods D, Hickman M, Jamshidi Y, Brull D, Vassiliou V, Jones A, Humphries S, Montgomery H (2001) Elite swimmers and D allele of the ACE I/D polymorphism. Hum Genet 108(3):230–232. doi:10.1007/s004390100466 PubMedCrossRefGoogle Scholar
  45. Woods D, World M, Rayson M, Williams A, Jubb M, Jamshidi Y, Hayward M, Mary D, Humphries S, Montgomery H (2002) Endurance enhancement related to the human angiotensin I-converting enzyme I-D polymorphism is not due to differences in the cardio respiratory response to training. Eur J Appl Physiol 86:240–244. doi:10.1007/s00421-001-0545-5 PubMedCrossRefGoogle Scholar
  46. Zhang B, Tanaka H, Shono N, Miura S, Kiyonaga A, Shindo M, Saku K (2003) The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet 63(2):139–144. doi:10.1034/j.1399-0004.2003.00029.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Aldo Matos Costa
    • 1
    • 2
    • 7
  • António José Silva
    • 2
    • 3
  • Nuno Domingos Garrido
    • 2
    • 3
  • Hugo Louro
    • 2
    • 4
  • Ricardo Jacó de Oliveira
    • 5
  • Luiza Breitenfeld
    • 6
    • 7
  1. 1.Department of Sports ScienceUniversity of Beira InteriorCovilhãPortugal
  2. 2.Research Centre in Sports, Health and Human DevelopmentVila RealPortugal
  3. 3.Department of Sports, Exercise and Health SciencesUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  4. 4.Sports Science Institute of Rio MaiorRio MaiorPortugal
  5. 5.Catholic University of BrasiliaBrasiliaBrazil
  6. 6.Faculty of Health SciencesUniversity of Beira InteriorCovilhãPortugal
  7. 7.CICS, Health Sciences Research CentreCovilhãPortugal

Personalised recommendations