Effect of prior exercise on postprandial lipemia and markers of inflammation and endothelial activation in normal weight and overweight adolescent boys

  • Owen J. MacEneaney
  • Michael Harrison
  • Donal J. O’Gorman
  • Elena V. Pankratieva
  • Paul L. O’Connor
  • Niall M. Moyna
Original Article


Postprandial lipemia (PPL) is associated with impaired endothelial function and inflammation. Acute exercise reduces PPL in adults. This investigation examined the effect of an acute bout of exercise on postprandial changes in triglycerides (TG), glucose, insulin, inflammation [white blood cell count (WBC), interleukin-6 (IL-6) tumor necrosis factor-alpha, C-reactive protein (CRP)] and endothelial activation [soluble intercellular adhesion molecule-1 (sICAM-1), vascular adhesion molecule-1 (sVCAM-1)] following a high-fat meal in adolescents. Ten normal weight (NW) (BMI, 20.9 ± 1.7 kg m−2; 15.6 ± 0.7 years) and eight overweight (OW) (BMI, 28.3 ± 3.6 kg m−2; 15.9 ± 0.4 years) adolescent boys underwent two 6-h oral fat tolerance tests (OFTT) separated by 7–10 days. On the evening prior to each OFTT, subjects either rested or completed a treadmill exercise bout (65% \( \dot{V}{\text{O}}_{2\max } ; \) 600 kcal expended). Exercise reduced (P < 0.01) the postprandial TG area under the curve by ~20% in the NW and OW groups. The postprandial glucose and insulin response did not differ between the control and exercise trials or between the NW and OW groups. Circulating leukocytes and plasma IL-6 levels increased (P < 0.01) in the NW and OW groups 6 h following the OFTT in both experimental conditions. There were no changes in CRP, sVCAM-1 or sICAM-1 following the OFTT and there were no differences between experimental condition or NW and OW groups. In conclusion, a moderate exercise bout prior to a high-fat meal effectively reduces postprandial TG concentrations to a similar degree in both NW and OW adolescents, but does not reduce the concomitant postprandial increase in WBC or IL-6.


Exercise Adolescents Postprandial lipemia Triglycerides Inflammation IL-6 Leukocytes ICAM-1 VCAM-1 



We would like to thank all of the subjects who participated in the study as well as Martin Duggan, Willie Guerin, John Horan, Colm Keogh, Dermot Morris, and Brian Talty for their invaluable assistance. This study was supported by The Irish Research Council for Science, Engineering and Technology and the EMBARK Initiative, funded by the National Development Plan.

Conflict of interest statement

The authors declare that they have no conflict of interest.


  1. Aldred HE, Perry IC, Hardman AE (1994) The effect of a single bout of brisk walking on postprandial lipemia in normolipidemic young adults. Metabolism 43:836–841. doi:10.1016/0026-0495(94)90263-1 PubMedCrossRefGoogle Scholar
  2. American College of Sports Medicine (2000) Guidelines for exercise testing and prescription, 6th. edn. Lippincott Williams and Wilkins, BaltimoreGoogle Scholar
  3. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298:309–316. doi:10.1001/jama.298.3.309 PubMedCrossRefGoogle Scholar
  4. Barrett LA, Morris JG, Stensel DJ, Nevill ME (2007) Exercise and postprandial plasma triacylglycerol concentrations in healthy adolescent boys. Med Sci Sports Exerc 39:116–122. doi:10.1249/01.mss.0000240327.31276.18 PubMedCrossRefGoogle Scholar
  5. Blackburn P, Lamarche B, Couillard C, Pascot A, Tremblay A, Bergeron J, Lemieux I, Despres JP (2003) Contribution of visceral adiposity to the exaggerated postprandial lipemia of men with impaired glucose tolerance. Diabetes Care 26:3303–3309. doi:10.2337/diacare.26.12.3303 PubMedCrossRefGoogle Scholar
  6. Carroll MF, Schade DS (2003) Timing of antioxidant vitamin ingestion alters postprandial proatherogenic serum markers. Circulation 108:24–31. doi:10.1161/01.CIR.0000074221.68903.77 PubMedCrossRefGoogle Scholar
  7. Ceriello A, Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Esposito K, Giugliano D (2004) Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 53:701–710. doi:10.2337/diabetes.53.3.701 PubMedCrossRefGoogle Scholar
  8. Chen W, Jump DB, Grant MB, Esselman WJ, Busik JV (2003) Dyslipidemia, but not hyperglycemia, induces inflammatory adhesion molecules in human retinal vascular endothelial cells. Invest Ophthalmol Vis Sci 44:5016–5022. doi:10.1167/iovs.03-0418 PubMedCrossRefGoogle Scholar
  9. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1–6. doi:10.1136/bmj.320.7244.1240 CrossRefGoogle Scholar
  10. Couillard C, Bergeron N, Prud’homme D, Bergeron J, Tremblay A, Bouchard C, Mauriège P, Després JP (1998) Postprandial triglyceride response in visceral obesity in men. Diabetes 47:953–960. doi:10.2337/diabetes.47.6.953 PubMedCrossRefGoogle Scholar
  11. Desideri G, De Simone M, Iughetti L, Rosato T, Iezzi ML, Marinucci MC, Cofini V, Croce G, Passacquale G, Necozione S, Ferri C (2005) Early activation of vascular endothelial cells and platelets in obese children. J Clin Endocrinol Metab 90:3145–3152. doi:10.1210/jc.2004-1741 PubMedCrossRefGoogle Scholar
  12. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248PubMedGoogle Scholar
  13. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  14. Gill JMR, Hardman AE (2003) Exercise and postprandial lipid metabolism: an update on potential mechanisms and interactions with high-carbohydrate diets. J Nutr Biochem 14:122–132. doi:10.1016/S0955-2863(02)00275-9 PubMedCrossRefGoogle Scholar
  15. Gill JMR, Caslake MJ, McCallister C, Tsofliou F, Ferrell WR, Packard CJ, Malkova D (2003a) Effects of short-term detraining on postprandial metabolism, endothelial function, and inflammation in endurance-trained men: dissociation between changes in triglyceride metabolism and endothelial function. J Clin Endocrinol Metab 88:4328–4335. doi:10.1210/jc.2003-030226 PubMedCrossRefGoogle Scholar
  16. Gill J, Herd SL, Vora V, Hardman AE (2003b) Effects of a brisk walk on lipoprotein lipase activity and plasma triglyceride concentrations in the fasted and postprandial states. Eur J Appl Physiol 89:184–190. doi:10.1007/s00421-002-0788-9 PubMedCrossRefGoogle Scholar
  17. Gill J, Al-Mamari A, Ferrell W, Cleland S, Packard C, Sattar N, Petrie J, Caslake M (2004) Effects of prior moderate exercise on postprandial metabolism and vascular function in lean and centrally obese men. J Am Coll Cardiol 44:2375–2382. doi:10.1016/j.jacc.2004.09.035 PubMedCrossRefGoogle Scholar
  18. Glowinska B, Urban M, Koput A, Galar M (2003) New atherosclerosis risk factors in obese, hypertensive and diabetic children and adolescents. Atherosclerosis 167:275–286. doi:10.1016/S0021-9150(03)00003-0 PubMedCrossRefGoogle Scholar
  19. Katsanos CS, Grandjean PW, Moffatt RJ (2004) Effects of low and moderate exercise intensity on postprandial lipemia and postheparin plasma lipoprotein lipase activity in physically active men. J Appl Physiol 96:181–188. doi:10.1152/japplphysiol.00243.2003 PubMedCrossRefGoogle Scholar
  20. Lanes R, Paoli M, Carrillo E, Villaroel O, Palacios A (2004) Peripheral inflammatory and fibrinolytic markers in adolescents with growth hormone deficiency: relation to postprandial lipemia. J Pediatr 145:657–661. doi:10.1016/j.jpeds.2004.07.037 PubMedCrossRefGoogle Scholar
  21. Leeuwenberg J, Smeets E, Neefjes J, Shaffer M, Cinek T, Jeunhomme T, Ahern T, Buurman WA (1992) E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology 77:543–549PubMedGoogle Scholar
  22. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143. doi:10.1161/hc0902.104353 PubMedCrossRefGoogle Scholar
  23. Marchesi S, Lupattelli G, Lombardini R, Roscini AR, Siepi D, Vaudo G, Pirro M, Sinzinger H, Schillaci G, Mannarino E (2003) Effects of fenofibrate on endothelial function and cell adhesion molecules during post-prandial lipemia in hypertriglyceridemia. J Clin Pharm Ther 28:419–424. doi:10.1046/j.0269-4727.2003.00512.x PubMedCrossRefGoogle Scholar
  24. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419. doi:10.1007/BF00280883 PubMedCrossRefGoogle Scholar
  25. Meydani M (2003) Soluble adhesion molecules: surrogate markers of cardiovascular disease? Nutr Rev 61:63–68. doi:10.1301/nr.2003.febr.63-68 PubMedCrossRefGoogle Scholar
  26. Moers A, Fenselau S, Schrezenmeir J (1997) Chylomicrons induce E-selectin and VCAM-1 expression in endothelial cells. Exp Clin Endocrinol Diabetes 105(Suppl 2):35–37PubMedCrossRefGoogle Scholar
  27. Molnár D, Schutz Y (1997) The effect of obesity, age, puberty and gender on resting metabolic rate in children and adolescents. Eur J Pediatr 156:376–381. doi:10.1007/s004310050618 PubMedCrossRefGoogle Scholar
  28. Moreno L, Quintela I, Fleta J, Sarria A, Roda L, Giner A, Bueno M (2001) Postprandial triglyceridemia in obese and non-obese adolescents. Importance of body composition and fat distribution. J Pediatr Endocrinol Metab 14:193–202PubMedGoogle Scholar
  29. Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari AM, Paolisso G, Marfella R, Guigliano D (2002) Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol 39:1145–1150. doi:10.1016/S0735-1097(02)01741-2 PubMedCrossRefGoogle Scholar
  30. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308. doi:10.1001/jama.298.3.299 PubMedCrossRefGoogle Scholar
  31. O’Brien KD, O’Gorman DJ, Hughes SM, Monedero J, O’Connor PL, Pankratieva E, Whelan M, Nelson N, Walsh TG, MacEneaney OJ, Woods C, Moyna NM (2006) Inflammatory markers and adhesion molecules correlate with BMI and aerobic fitness levels in Irish adolescents. Med Sci Sports Exerc 38:S2302Google Scholar
  32. Patsch JR, Miesenbock G, Hopferweiser T, Muhlberger V, Knapp E, Dunn JK, Gotto AM, Patsch W (1992) Relation of triglyceride metabolism and coronary artery disease: studies in the postprandial state. Arterioscler Thromb 12:1336–1345PubMedGoogle Scholar
  33. Pedersen BK, Steesburg A, Fischer C, Keller C, Keller P, Plomgaard P, Wolsk-Petersen E, Febbraio M (2004) The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc 63:263–267. doi:10.1079/PNS2004338 PubMedCrossRefGoogle Scholar
  34. Peronnet F, Massicote D (1991) Table of nonprotein respiratory quotient: an update. Can J Sport Sci 16:23–29PubMedGoogle Scholar
  35. Petitt DS, Cureton KJ (2003) Effects of prior exercise on postprandial lipemia: a quantitative review. Metabolism 52:418–424. doi:10.1053/meta.2003.50071 PubMedCrossRefGoogle Scholar
  36. Potts JL, Coppack SW, Fisher RM, Humphreys SM, Gibbons GF, Frayn KN (1995) Impaired postprandial clearance of triacylglycerol-rich lipoproteins in adipose tissue in obese subjects. Am J Physiol 268:E588–E594PubMedGoogle Scholar
  37. Seip R, Mair K, Cole TG, Semenkovich CF (1997) Induction of human skeletal muscle lipoprotein lipase gene expression by short-term exercise is transient. Am J Physiol 272:E255–E261PubMedGoogle Scholar
  38. Sorenson KE, Celermajer DS, Georgakopoulos D, Hatcher G, Betteridge DJ, Deanfield J (1994) Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level. J Clin Invest 93:50–55. doi:10.1172/JCI116983 CrossRefGoogle Scholar
  39. Sternby NH, Fernandez-Britto JE, Nordet P (1999) Pathological determinants of atherosclerosis in youth (PBDAY Study), 1986–96. Bull World Health Organ 77:250–257PubMedGoogle Scholar
  40. Tolfrey K, Doggett A, Boyd C, Pinner S, Sharples A, Barrett L (2008) Postprandial triacylglycerol in adolescent boys: a case for moderate exercise. Med Sci Sports Exerc 40:1049–1056. doi:10.1249/MSS.0b013e31816770fe PubMedCrossRefGoogle Scholar
  41. Tsai W-C, Li Y-H, Lin C-C, Chao T-H, Chen J-H (2004) Effects of oxidative stress on endothelial function after a high-fat meal. Clin Sci 106:315–319. doi:10.1042/CS20030227 PubMedCrossRefGoogle Scholar
  42. Umpaichitra V, Banerji M, Castells S (2004) Postprandial hyperlipidemia after a fat loading test in minority adolescents with type 2 diabetes mellitus and obesity. J Pediatr Endocrinol Metab 17:853–864PubMedGoogle Scholar
  43. van Oostrom AJHHM, Sijmonsma TP, Verseyden C, Jansen EHJM, de Koning EJP, Rabelink TJ, Cabezas MC (2003) Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res 44:576–583. doi:10.1194/jlr.M200419-JLR200 PubMedCrossRefGoogle Scholar
  44. van Oostrom AJHHM, van Wijk JPH, Cabezas MC (2004) Lipaemia, inflammation and atherosclerosis: novel opportunities in the understanding and treatment of atherosclerosis. Drugs 64:19–41. doi:10.2165/00003495-200464002-00004 PubMedCrossRefGoogle Scholar
  45. Vogel RA (1997) Coronary risk factors, endothelial function, and atherosclerosis: a review. Clin Cardiol 20:426–432. doi:10.1002/clc.4960200505 PubMedCrossRefGoogle Scholar
  46. Watson C, Whittaker S, Smith N, Vora AJ, Dumonde DC, Brown KA (1996) IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes. Clin Exp Immunol 105:112–119. doi:10.1046/j.1365-2249.1996.d01-717.x PubMedCrossRefGoogle Scholar
  47. Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9PubMedGoogle Scholar
  48. Zhang JQ, Thomas TR, Ball SD (1998) Effect of exercise timing on postprandial lipemia and HDL cholesterol subfractions. J Appl Physiol 85:1516–1522PubMedGoogle Scholar
  49. Zhang JQ, Nunez G, Feathers S, Hart CL, Yao WX (2004) Effect of exercise timing on postprandial lipemia in hypertriglyceridemic men. Can J Appl Physiol 29:590–603PubMedGoogle Scholar
  50. Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60:473–485PubMedGoogle Scholar
  51. Zilversmit DB (1995) Atherogenic nature of triglycerides, postprandial lipidemia, and triglyceride-rich remnant lipoproteins. Clin Chem 41:153–158PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Owen J. MacEneaney
    • 1
    • 3
  • Michael Harrison
    • 2
  • Donal J. O’Gorman
    • 1
  • Elena V. Pankratieva
    • 1
  • Paul L. O’Connor
    • 1
  • Niall M. Moyna
    • 1
  1. 1.Dublin City UniversityDublin 9Ireland
  2. 2.Waterford Institute of TechnologyWaterfordIreland
  3. 3.Integrative Vascular Biology Laboratory, Department of Integrative PhysiologyUniversity of ColoradoBoulderUSA

Personalised recommendations