European Journal of Applied Physiology

, Volume 106, Issue 5, pp 741–748

Fitness efficacy of vibratory exercise compared to walking in postmenopausal women

  • Armando M. Raimundo
  • Narcis Gusi
  • Pablo Tomas-Carus
Original Article


In this study, we compared the efficacy of 8 months of low-frequency vibration and a walk-based program in health-related fitness. Twenty-seven postmenopausal women were randomly assigned into two groups: whole-body vibration (WBV) group (n = 18) performed three times/week a static exercise on a vibration platform (6 sets of 1-min with 1 min of rest, with a 12.6 Hz of frequency and an amplitude of 3 mm); walk-based program (WP) group (n = 18) performed three times/week a 60-min of walk activity at 70–75% of maximal heart rate. A health-related battery of tests was applied. Maximal unilateral concentric and eccentric isokinetic torque of the knee extensors was recorded by an isokinetic dynamometer. Physical fitness was measured using the following tests: vertical jump test, chair rise test and maximal walking speed test over 4 m. Maximal unilateral isokinetic strength was measured in the knee extensors in concentric actions at 60 and 300°/s, and eccentric action at 60°/s. After 8 months, the WP improved the time spent to walk 4 m (20%) and to perform the chair rise test (12%) compared to the WBV group (P = 0.006, 0.002, respectively). In contrast, the comparison of the changes in vertical jump showed the higher effectiveness of the vibratory exercise in 7% (P = 0.025). None of exercise programs showed change on isokinetic measurements. These results indicate that both programs differed in the main achievements and could be complementary to prevent lower limbs muscle strength decrease as we age [ISRCTN76235671].


Aging Fitness Whole-body vibration (WBV) Muscle strength 


  1. Altman DG, Machin D, Bryant TN, Gardner MJ (2000) Statistics with confidence. Confidence intervals and statistical guidelines. BMJ Books, BristolGoogle Scholar
  2. Bogaerts A, Verschueren S, Delecluse C, Claessens A, Boonen S (2006) Effects of whole body vibration training on postural control in older individuals: a 1 year randomized controlled trial. Gait Posture 26(2):309–316Google Scholar
  3. Bosco C, Colli R, Introini E, Cardinale M, Iacovelli M, Tihanyi J, Duvillard SP, Viru A (1999) Adaptive responses of human skeletal muscle to vibration exposure. Clin Physiol 19:183–187. doi:10.1046/j.1365-2281.1999.00155.x PubMedCrossRefGoogle Scholar
  4. Bruyere O, Wuidart M, Palma E, Gourlay M, Ethgen O, Richy F, Reginster J (2005) Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents. Arch Phys Med Rehabil 86:303–307. doi:10.1016/j.apmr.2004.05.019 PubMedCrossRefGoogle Scholar
  5. Cardinale M, Bosco C (2003) The use of vibration as an exercise intervention. Exerc Sport Sci 31(1):3–7. doi:10.1097/00003677-200301000-00002 CrossRefGoogle Scholar
  6. Cardinale M, Rittweger J (2006) Vibration exercise makes your muscles and bones stronger: fact or fiction? J Br Menopause Soc 12:12–18. doi:10.1258/136218006775997261 PubMedCrossRefGoogle Scholar
  7. Cardinale M, Wakeling J (2005) Whole body vibration exercise: are vibrations good for you? Br J Sports Med 39:585–589. doi:10.1136/bjsm.2005.016857 PubMedCrossRefGoogle Scholar
  8. Cochrane DJ, Legg SJ, Hooker MJ (2004) The short-term effect of whole-body vibration training on vertical jump, sprint, and agility performance. J Strength Cond Res 18(4):828–832. doi:10.1519/14213.1 PubMedCrossRefGoogle Scholar
  9. Croisier JL, Malnati M, Reichard LB, Peretz C, Dvir Z (2007) Quadriceps and hamstring isokinetic strength and electromyographic activity measured at different ranges of motion: a reproducibility study. J Electromyogr Kinesiol 17(4):484–492. doi:10.1016/j.jelekin.2006.04.003 PubMedCrossRefGoogle Scholar
  10. Delecluse C, Roelants M, Verschueren S (2003) Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc 35(6):1033–1041. doi:10.1249/01.MSS.0000069752.96438.B0 PubMedCrossRefGoogle Scholar
  11. Desmedt JE, Godaux E (1978) Mechanism of the vibration paradox: excitatory and inhibitory effects of tendon vibration on single soleus muscle motor units in man. J Physiol (285):197–207Google Scholar
  12. Dvir Z (2003) How much is necessary to indicate a real improvement in muscle function? A review of modern methods of reproducibility analysis. Isokinet Exerc Sci 11:49–52Google Scholar
  13. Frontera W, Bigard X (2002) The benefits of strength training in the elderly. Sci Sports 17:109–116. doi:10.1016/S0765-1597(02)00135-1 CrossRefGoogle Scholar
  14. Goel VK, Park H, Kong W (1994) Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach. J Biomech Eng 116(4):377–383. doi:10.1115/1.2895787 PubMedCrossRefGoogle Scholar
  15. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB (1995) Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 332:556–561. doi:10.1056/NEJM199503023320902 PubMedCrossRefGoogle Scholar
  16. Gusi N, Marina M, Nogués J, Valenzuela A, Nàcher S, FA R (1997) Comparative validity and reproducibility of two vertical jump methods for estimating strength. Apunts Med Esport. 32:271–278Google Scholar
  17. Gusi N, Raimundo A, Leal A (2006) Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord 7:92. doi:10.1186/1471-2474-7-92 PubMedCrossRefGoogle Scholar
  18. Iwamoto J, Otaka Y, Kudo K, Takeda T, Uzawa M, Hirabayashi (2004) Efficacy of training program for ambulatory competence in elderly women. Keio J Med 53(2):85–89. doi:10.2302/kjm.53.85
  19. Izquierdo M, Aguado X, Gonzalez R, Lopez JL, Hakkinen K (1999) Maximal and explosive force production capacity and balance performance in men of different ages. Eur J Appl Physiol Occup Physiol 79(3):260–267. doi:10.1007/s004210050504 PubMedCrossRefGoogle Scholar
  20. Kallinen M, Markku A (1995) Aging, physical activity and sports injuries. Sports Med 20(1):41–52. doi:10.2165/00007256-199520010-00004 PubMedCrossRefGoogle Scholar
  21. King AC, Rejeski WJ, Buchner DM (1998) Physical activity interventions targeting older adults: a critical review and recommendations. Am J Prev Med 15:316–333. doi:10.1016/S0749-3797(98)00085-3 PubMedCrossRefGoogle Scholar
  22. Mader U, Martin BW, Schutz Y, Marti B (2006) Validity of four short physical activity questionnaires in middle-aged persons. Med Sci Sports Exerc 38:1255–1266. doi:10.1249/01.mss.0000227310.18902.28 PubMedCrossRefGoogle Scholar
  23. McCartney N, Hicks AL, Martin J, Webber CE (1995) Long-term resistance training in the elderly: effects on dynamic strength, exercise capacity, muscle, and bone. J Gerontol A Biol Sci Med Sci 50:B97–B104Google Scholar
  24. Michaut A, Pousson M, Babault N, Van Hoecke J (2002) Is eccentric exercise-induced torque decrease contraction type dependent? Med Sci Sports Exerc 34:1003–1008. doi:10.1097/00005768-200206000-00016 PubMedCrossRefGoogle Scholar
  25. Oja P, Laukkanen R, Pasanen M, Tyry T, Vuori I (1991) A 2-km walking test for assessing the cardiorespiratory fitness of healthy adults. Int J Sports Med 12(4):356–362. doi:10.1055/s-2007-1024694 PubMedCrossRefGoogle Scholar
  26. Perrin DH (1993) Isokinetic exercise and assessment. Human Kinetics, CharlottesvilleGoogle Scholar
  27. Rees SS, Murphy AJ, Watsford ML (2008a) Effects of whole body vibration on postural steadiness in an older population. J Sci Med Sport (in press)Google Scholar
  28. Rees SS, Murphy AJ, Watsford ML (2008b) Effects of whole-body vibration exercise on lower-extremity muscle strength and power in an older population: a randomized clinical trial. Phys Ther 88(4):462–470PubMedGoogle Scholar
  29. Rehn B, Lidström J, Skoglund J, Lindström B (2007) Effects on leg muscular performance from whole-body vibration exercise: a systematic review. Scand J Med Sci Sports 17:2–11PubMedGoogle Scholar
  30. Reichard LB, Croisier JL, Malnati M, Katz-Leurer M, Dvir Z (2005) Testing knee extension and flexion strength at different ranges of motion: an isokinetic and electromyographic study. Eur J Appl Physiol 95(4):371–376. doi:10.1007/s00421-005-0006-7 PubMedCrossRefGoogle Scholar
  31. Rittweger J, Schiessl H, Felsenberg D (2001) Oxygen-uptake during whole body vibration exercise: comparison with squatting as a slow voluntary movement. Eur J Appl Physiol 86:169–173. doi:10.1007/s004210100511 PubMedCrossRefGoogle Scholar
  32. Roelants M, Delecluse C, Goris M, Verschueren S (2004) Effects of 24 weeks of whole body vibration training on body composition and muscle strength in untrained females. Int J Sports Med 25:1–5. doi:10.1055/s-2003-45238 PubMedCrossRefGoogle Scholar
  33. Ruiter CJ, Van Raak SM, Schilperoot JV, Hollander AP, Haan A (2003) The effects of 11 weeks whole body vibration training on jump height, contractile properties and activation of human knee extensors. Eur J Appl Physiol 90:595–600. doi:10.1007/s00421-003-0931-2 PubMedCrossRefGoogle Scholar
  34. Runge M, Rehfeld G, Resnicek E (2000) Balance training and exercise in geriatric patients. J Musculoskelet Neuronal Interact I:54–58Google Scholar
  35. Russo C, Lauretani F, Bandinelli S, Bartali B, Cavazzini C, Guralnik J, Ferruci L (2003) High-frequency vibration training increases muscle power in postmenopausal women. Arch Phys Med Rehabil 84(December):1854–1857. doi:10.1016/S0003-9993(03)00357-5 Google Scholar
  36. Schuhfried O, Mittermaier C, Jovanovic T, Pieber K, Paternostro-Sluga T (2005) Effects of whole-body vibration in patients with multiple sclerosis: a pilot study. Clin Rehabil 19:834–842. doi:10.1191/0269215505cr919oa PubMedCrossRefGoogle Scholar
  37. Skelton DA, Kennedy J, Rutherford OM (2002) Explosive power and asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65. Age Ageing 31(2):119–125. doi:10.1093/ageing/31.2.119 PubMedCrossRefGoogle Scholar
  38. Stewart JA, Cochrane DJ, Morton RH (2009) Differential effects of whole body vibration durations on knee extensor strength. J Sci Med Sport 12(1):50–53. doi:10.1016/j.jsams.2007.09.005 PubMedCrossRefGoogle Scholar
  39. Studenski S, Perera S, Wallace D, Chandler JM, Duncan PW, Rooney E, Fox M, Guralnick JM (2003) Physical performance measures in the clinical setting. J Am Geriatr Soc 51:314–322. doi:10.1046/j.1532-5415.2003.51104.x PubMedCrossRefGoogle Scholar
  40. Thapa PB, Gideon P, Fought RL, Kormicki M, Ray WA (1994) Comparison of clinical and biomechanical measures of balance and mobility in elderly nursing home residents. J Am Geriatr Soc 42(5):493–500PubMedGoogle Scholar
  41. Torvinen S, Kannus P, Sievänen H, Järvinen T, Pasanen M, Kontulainen S, Järvinen T, Järvinen M, Oja P, Vuori I (2002a) Effect of a vibration exposure on muscular performance and body balance Randomized cross-over study. Clin Physiol Funct Imaging 22(2):145–152. doi:10.1046/j.1365-2281.2002.00410.x PubMedCrossRefGoogle Scholar
  42. Torvinen S, Kannus P, Sievänen H, Järvinen T, Pasanen M, Kontulainen S, Järvinen T, Järvinen M, Oja P, Vuori I (2002b) Effect of four-month vertical whole body vibration on performance and balance. Med Sci Sports Exerc 34(9):1523–1528. doi:10.1097/00005768-200209000-00020 PubMedCrossRefGoogle Scholar
  43. Torvinen S, Kannus P, Sievänen H, Järvinen T, Pasanen M, Kontulainen S, Nenonen A, Järvinen T, Paakkala T, Järvinen M, Oja P, Vuori I (2003) Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomize controlled study. J Bone Miner Res 18(5):876–884. doi:10.1359/jbmr.2003.18.5.876 PubMedCrossRefGoogle Scholar
  44. Verschueren S, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19(3):352–359. doi:10.1359/JBMR.0301245 PubMedCrossRefGoogle Scholar
  45. Yamazaki S, Ichimura S, Iwamoto J, Takeda T, Toyama Y (2004) Effect of walking exercise on bone metabolism in postmenopausal women with osteopenia/osteoporosis. J Bone Miner Metab 22:500–508. doi:10.1007/s00774-004-0514-2 PubMedCrossRefGoogle Scholar
  46. Zamparo P, Perini R, Orizio C, Sacher M, Ferretti G (1992) The energy cost of walking or running on sand. Eur J Appl Physiol 65:183–187. doi:10.1007/BF00705078 Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Armando M. Raimundo
    • 1
  • Narcis Gusi
    • 2
  • Pablo Tomas-Carus
    • 1
  1. 1.Health Science and Technology Research Centre, Department of Sport and HealthUniversity of ÉvoraÉvoraPortugal
  2. 2.Faculty of Sport SciencesUniversity of ExtremaduraCáceresSpain

Personalised recommendations