European Journal of Applied Physiology

, Volume 106, Issue 3, pp 321–332 | Cite as

Sports performance: is there evidence that the body clock plays a role?

  • Thomas Reilly
  • Jim WaterhouseEmail author


Athletic performance shows a time-of-day effect, possible causes for which are environmental factors (which can be removed in laboratory studies), the sleep-wake cycle and the internal “body clock”. The evidence currently available does not enable the roles of these last two factors to be separated. Even so, results indicate that the body clock probably does play some role in generating rhythms in sports performance, and that to deny this is unduly critical. Protocols to assess the separate roles of the body clock and time awake are then outlined. A serious impediment to experimental work is muscle fatigue, when maximal or sustained muscle exertion is required. Dealing with this problem can involve unacceptably prolonged protocols but alternatives which stress dexterity and eye-hand co-ordination exist, and these are directly relevant to many sports (shooting, for example). The review concludes with suggestions regarding the future value to sports physiology of chronobiological studies.


Circadian rhythms Athletics Muscle activity Endogenous Exogenous 


  1. Åkerstedt T, Hume K, Minors D et al (1993) Regulation of sleep and naps on an irregular schedule. Sleep 16:736–743PubMedGoogle Scholar
  2. Åkerstedt T, Hume K, Minors D et al (1998) Experimental separation of time of day and homeostatic influences on sleep. Am J Physiol (Regulat, Integrat and Comp Physiol) 274:R1162–R1168Google Scholar
  3. Aldemir H, Atkinson G, Cable NT et al (2000) Comparison of the immediate effects of moderate exercise in the early morning and late afternoon on core temperature and cutaneous thermoregulatory mechanisms. Chronobiol Int 17:197–207. doi: 10.1081/CBI-100101043 PubMedCrossRefGoogle Scholar
  4. Arnett M (2002) Effects of prolonged and reduced warm-ups on diurnal variation in body temperature and swim performance. J Strength Cond Res 16:256–261. doi: 10.1519/1533-4287(2002)016<0256:EOPARW>2.0.CO;2 PubMedCrossRefGoogle Scholar
  5. Atkinson G, Reilly T (1995) Effects of age and time of day on preferred work rates during prolonged exercise. Chronobiol Int 12:121–134. doi: 10.3109/07420529509064507 PubMedCrossRefGoogle Scholar
  6. Atkinson G, Reilly T (1996) Circadian variation in sports performance. Sports Med 21:292–312. doi: 10.2165/00007256-199621040-00005 PubMedCrossRefGoogle Scholar
  7. Atkinson G, Spiers L (1998) Diurnal variations in tennis serve. Percept Mot Skills 86:1335–1338PubMedGoogle Scholar
  8. Atkinson G, Todd C, Reilly T et al (2005) Diurnal variation in cycling performance: influence of warm-up. J Sports Sci 23:321–329. doi: 10.1080/02640410410001729919 PubMedCrossRefGoogle Scholar
  9. Bambaeichi E, Reilly T, Cable N et al (2005) The influence of time of day and partial sleep loss on muscle strength in eumenorrheic females. Ergonomics 48:1499–1511. doi: 10.1080/00140130500101437 PubMedCrossRefGoogle Scholar
  10. Barattini P (1997) Circadian rhythms, athletic performance and jet-lag. Med Sport (Roma) 50:127–139Google Scholar
  11. Baxter C, Reilly T (1983) Influence of time of day on all-out swimming. Br J Sports Med 17:122–127. doi: 10.1136/bjsm.17.2.122 PubMedCrossRefGoogle Scholar
  12. Bessot N, Nicolas A, Moussay S et al (2006) The effect of pedal rate and time of day on the time to exhaustion from high-intensity exercise. Chronobiol Int 23:1009–1024. doi: 10.1080/07420520600920726 PubMedCrossRefGoogle Scholar
  13. Bishop D (2004) The effects of travel on team performance in the Australian national netball competition. J Sci Med Sport 7:118–122. doi: 10.1016/S1440-2440(04)80050-1 PubMedCrossRefGoogle Scholar
  14. Blumert P, Crum A, Ernsting M et al (2007) The acute effects of twenty-four hours of sleep loss on the performance of national caliber male collegiate weightlifters. J Strength Cond Res 21:1146–1154. doi: 10.1519/R-21606.1 PubMedCrossRefGoogle Scholar
  15. Brisswalter J, Bieuzen F, Giacomoni M et al (2007) Morning-to-evening differences in oxygen uptake kinetics in short-duration cycling exercise. Chronobiol Int 24:495–506. doi: 10.1080/07420520701420691 PubMedCrossRefGoogle Scholar
  16. Bullock N, Martin D, Ross A et al (2007) Effect of long haul travel on maximal sprint performance and diurnal variations in elite skeleton athletes. Br J Sports Med 41:569–573. doi: 10.1136/bjsm.2006.033233 PubMedCrossRefGoogle Scholar
  17. Callard D, Davenne D, Gauthier A et al (2000) Circadian rhythms in human muscular efficiency: continuous physical exercise versus continuous rest. A crossover study. Chronobiol Int 17:693–704. doi: 10.1081/CBI-100101075 PubMedCrossRefGoogle Scholar
  18. Cappaert T (1999) Review: time of day effect on athletic performance: an update. J Strength Cond Res 13:412–421. doi: 10.1519/1533-4287(1999)013<0412:TODEOA>2.0.CO;2 CrossRefGoogle Scholar
  19. Coldwells A, Atkinson G, Reilly T (1994) Sources of variation in back and leg dynamometry. Ergonomics 37:79–86. doi: 10.1080/00140139408963625 PubMedCrossRefGoogle Scholar
  20. Deschenes M, Kraemer W, Bush J et al (1998) Biorhythmic influences on functional capacity of human muscle and physiological responses. Med Sci Sports Exerc 30:1399–1407. doi: 10.1097/00005768-199809000-00008 PubMedCrossRefGoogle Scholar
  21. Drust B, Waterhouse J, Atkinson G et al (2005) Circadian rhythms in sports performance: an update. Chronobiol Int 22:21–40. doi: 10.1081/CBI-200041039 PubMedCrossRefGoogle Scholar
  22. Edwards B, Edwards W, Waterhouse J et al (2005a) Can cycling performance in an early morning, laboratory-based cycle time-trial be improved by morning exercise the day before? Int J Sports Med 26:651–656. doi: 10.1055/s-2004-830439 PubMedCrossRefGoogle Scholar
  23. Edwards B, Lindsay K, Waterhouse J (2005b) Effect of time of day on the accuracy and consistency of the badminton serve. Ergonomics 48:1488–1498. doi: 10.1080/00140130500100975 PubMedCrossRefGoogle Scholar
  24. Edwards B, Waterhouse J, Atkinson G et al (2007) Effects of time of day and distance upon accuracy and consistency of throwing darts. J Sports Sci 25:1531–1538. doi: 10.1080/02640410701244975 PubMedCrossRefGoogle Scholar
  25. Edwards B, Waterhouse J, Reilly T (2008) Circadian rhythms and their association with body temperature and time awake when performing a simple task with the dominant and non-dominant hand. Chronobiol Int 25:115–132. doi: 10.1080/07420520801921614 PubMedCrossRefGoogle Scholar
  26. Forsyth J, Reilly T (2004) Circadian rhythms in blood lactate concentration during incremental ergometer rowing. Eur J Appl Physiol 92:69–74. doi: 10.1007/s00421-004-1059-8 PubMedCrossRefGoogle Scholar
  27. Gauthier A, Davenne D, Martin A et al (1996) Diurnal rhythm of the muscular performance of elbow flexors during isometric contractions. Chronobiol Int 13:135–146. doi: 10.3109/07420529609037077 PubMedCrossRefGoogle Scholar
  28. Giacomoni M, Billaut F, Falgairette G (2006) Effects of the time of day on repeated all-out cycle performance and short-term recovery patterns. Int J Sports Med 27:468–474. doi: 10.1055/s-2005-865822 PubMedCrossRefGoogle Scholar
  29. Guette M, Gondin J, Martin A (2005) Time-of-day effect on the torque and neuromuscular properties of dominant and non-dominant quadriceps femoris. Chronobiol Int 22:541–558. doi: 10.1081/CBI-200062407 PubMedCrossRefGoogle Scholar
  30. Haimov I, Arendt J (1999) The prevention and treatment of jet lag. Sleep Med Rev 3:229–240. doi: 10.1016/S1087-0792(99)90004-7 PubMedCrossRefGoogle Scholar
  31. Hill DW, Hill CM, Fields K et al (1993) Effects of jet lag on factors related to sports performance. Can J Appl Physiol 18:91–103PubMedGoogle Scholar
  32. Hill D, Leiferman J, Lynch N et al (1998) Temporal specificity in adaptations to high-intensity exercise training. Med Sci Sports Exerc 30:450–455. doi: 10.1097/00005768-199803000-00017 PubMedGoogle Scholar
  33. Iellamo F, Pigozzi F, Parisi A et al (2003) The stress of competition dissociates neural and cortisol homeostasis in elite athletes. J Sports Med Phys Fitness 43:539–545PubMedGoogle Scholar
  34. Javierre C, Calvo M, Diez A et al (1996) Influence of sleep and meal schedules on performance peaks in competitive sprinters. Int J Sports Med 17:404–408. doi: 10.1055/s-2007-972869 PubMedCrossRefGoogle Scholar
  35. Jehue R, Street D, Huizeuga R (1993) Effect of time zone and game time changes on peak performance: National Football League. Med Sci Sports Exerc 25:127–131. doi: 10.1249/00005768-199301000-00017 PubMedCrossRefGoogle Scholar
  36. Khalsa S, Jewett M, Cajochen C et al (2003) A phase response curve to single bright light pulses in human subjects. J Physiol 549:945–952. doi: 10.1113/jphysiol.2003.040477 PubMedCrossRefGoogle Scholar
  37. Kin-Isler A (2006) Time-of-day effects in maximal anaerobic performance and blood lactate concentration during and after a supramaximal exercise. Isokinet Exerc Sci 14:335–340Google Scholar
  38. Kleitman N (1963) Sleep and Wakefulness, 2nd edn. University of Chicago Press, Chicago/London, p 297Google Scholar
  39. Kline C, Durstine J, Davis J et al (2007) Circadian variation in swim performance. J Appl Physiol 102:641–649. doi: 10.1152/japplphysiol.00910.2006 PubMedCrossRefGoogle Scholar
  40. Lemmer B, Kern R, Nold G et al (2002) Jet lag in athletes after eastward and westward time-zone transition. Chronobiol Int 19:743–764. doi: 10.1081/CBI-120005391 PubMedCrossRefGoogle Scholar
  41. Manfredini R, Manfredini F, Fersini C et al (1998) Circadian rhythms, athletic performance, and jet lag. Br J Sports Med 32:101–106. doi: 10.1136/bjsm.32.2.101 PubMedCrossRefGoogle Scholar
  42. Martin L, Thompson K (2000) Reproducibility of diurnal variation in sub-maximal swimming. Int J Sports Med 21:387–392. doi: 10.1055/s-2000-3829 PubMedCrossRefGoogle Scholar
  43. Martin L, Doggart A, Whyte G (2001) Comparison of physiological responses to morning and evening submaximal running. J Sports Sci 19:969–976. doi: 10.1080/026404101317108471 PubMedCrossRefGoogle Scholar
  44. Meney I, Waterhouse J, Atkinson G et al (1998) The effect of one night’s sleep deprivation on temperature, mood, and physical performance in subjects with different amounts of habitual physical activity. Chronobiol Int 14:125–132Google Scholar
  45. Minors D, Nicholson A, Spencer M et al (1986) Irregularity of rest and activity: studies on circadian rhythmicity in man. J Physiol 381:279–295PubMedGoogle Scholar
  46. Mougin F, Simonrigaud M, Davenne D et al (1991) Effects of sleep disturbance on subsequent physical performance. Eur J Appl Physiol Occup Physiol 63:77–82. doi: 10.1007/BF00235173 PubMedCrossRefGoogle Scholar
  47. Naitoh P, Kelly T, Babkoff H (1993) Sleep inertia: best time not to wake up? Chronobiol Int 10:109–118. doi: 10.3109/07420529309059699 PubMedCrossRefGoogle Scholar
  48. Nicolas A, Gauthier A, Bessot N et al (2005) Time-of-day effects on myoelectric and mechanical properties of muscle during maximal and prolonged isokinetic exercise. Chronobiol Int 22:997–1011. doi: 10.1080/07420520500397892 PubMedCrossRefGoogle Scholar
  49. Nicolas A, Gauthier A, Bessot N et al (2008a) Effect of time-of-day on neuromuscular properties of knee extensors after a short exhaustive cycling exercise. Isokinet Exerc Sci 16:33–40Google Scholar
  50. Nicolas A, Gauthier A, Trouillet J et al (2008b) The influence of circadian rhythm during a sustained submaximal exercise and on recovery process. J Electromyogr Kinesiol 18:284–290. doi: 10.1016/j.jelekin.2006.10.003 PubMedCrossRefGoogle Scholar
  51. O’Connor P, Morgan W, Koltyn K et al (1991) Air travel across four time zones in college swimmers. J Appl Physiol 70:756–763PubMedGoogle Scholar
  52. O’Connor P, Youngstedt S, Buxton O et al. (2004) FIMS (Fédération Internationale de Médecine du Sport) position statement. Air travel and performance in sports. (Accessed February, 2009)
  53. Piggins H (2002) Human clock genes. Ann Med 34:394–400. doi: 10.1080/078538902320772142 PubMedCrossRefGoogle Scholar
  54. Racinais S, Hue O, Hertogh C et al (2004) Time-of-day effects in maximal anaerobic leg exercise in tropical environment: a first approach. Int J Sports Med 25:186–190. doi: 10.1055/s-2003-45258 PubMedCrossRefGoogle Scholar
  55. Racinais S, Blonc S, Hue O (2005a) Effects of active warm-up and diurnal increase in temperature on muscular power. Med Sci Sports Exerc 37:2134–2139. doi: 10.1249/01.mss.0000179099.81706.11 PubMedCrossRefGoogle Scholar
  56. Racinais S, Blonc S, Jonville S et al (2005b) Time of day influences the environmental effects on muscle force and contractility. Med Sci Sports Exerc 37:256–261. doi: 10.1249/01.MSS.0000149885.82163.9F PubMedCrossRefGoogle Scholar
  57. Racinais S, Connes P, Bishop D et al (2005c) Morning versus evening power output and repeated-sprint ability. Chronobiol Int 22:1029–1039. doi: 10.1080/07420520500397918 PubMedCrossRefGoogle Scholar
  58. Reilly T (1982) Circadian variation in ventilatory and metabolic adaptations to submaximal exercise. Br J Sports Med 16:115–116. doi: 10.1136/bjsm.16.2.115-a CrossRefGoogle Scholar
  59. Reilly T (1990) Human circadian rhythms and exercise. Crit Rev Biomed Eng 18:165–180PubMedGoogle Scholar
  60. Reilly T (1994) Circadian rhythms. In: Harries M, Williams C, Stanish W, Micheli L (eds) Oxford textbook of sports medicine. Oxford University Press, Oxford, pp 238–254Google Scholar
  61. Reilly T (2007) Circadian rhythms. In: Winter E, Jones A, Davison R Bromley P, Mercer T (eds) Sport and exercise physiology testing guideline: the British Association of Sport and Exercise Science Guide; Vol 1, Sport Testing. Routledge, London, pp 54–60Google Scholar
  62. Reilly T, Bambaeichi E (2003) Methodological issues in studies of rhythms in human performance. Biol Rhythm Res 34:321–336. doi: 10.1076/brhm.34.4.321.26229 CrossRefGoogle Scholar
  63. Reilly T, Brooks GA (1982) Investigation of circadian rhythms in metabolic responses to exercise. Ergonomics 25:1093–1097. doi: 10.1080/00140138208925067 PubMedCrossRefGoogle Scholar
  64. Reilly T, Down A (1992) Investigation of circadian rhythm in anaerobic power and capacity of the legs. J Sports Med Phys Fitness 32:343–347PubMedGoogle Scholar
  65. Reilly T, Edwards B (2007) Altered sleep-wake cycles and physical performance in athletes. Physiol Behav 90:274–284. doi: 10.1016/j.physbeh.2006.09.017 PubMedCrossRefGoogle Scholar
  66. Reilly T, Marshall S (1991) Circadian rhythms in power output on a swim bench. J Swimming Res 7:11–13Google Scholar
  67. Reilly T, Mellor S (1988) Jet-lag in student Rugby League players following a near-maximal time-zone shift. In: Reilly T, Lees A, Davids K, Murphy WJ (eds) Science and football. Spon, London, pp 249–256Google Scholar
  68. Reilly T, Walsh T (1981) Physiological, psychological and performance measures during an endurance record for 5-a-side soccer play. Br J Sports Med 15:122–128. doi: 10.1136/bjsm.15.2.122 PubMedCrossRefGoogle Scholar
  69. Reilly T, Atkinson G, Waterhouse J (1997a) Travel fatigue and jet-lag. J Sports Sci 15:365–369. doi: 10.1080/026404197367263 PubMedCrossRefGoogle Scholar
  70. Reilly T, Atkinson G, Waterhouse J (1997b) Biological Rhythms and Exercise. Oxford University Press, Oxford, p 156Google Scholar
  71. Reilly T, Atkinson G, Waterhouse J (2000) Chronobiology and physical performance. In: Garrett W Jr, Kirkendall D (eds) Exercise and sport science. Lippincott, Philadelphia, pp 351–372Google Scholar
  72. Reilly T, Atkinson G, Budgett R (2001) Effect of low-dose temazepam on physiological variables and performance tests following a westerly flight across five time zones. Int J Sports Med 22:166–174. doi: 10.1055/s-2001-16379 PubMedCrossRefGoogle Scholar
  73. Reilly T, Waterhouse J, Edwards B (2005) Jet lag and air travel: implications for performance. Clin Sports Med 24:367–380. doi: 10.1016/j.csm.2004.12.004 PubMedCrossRefGoogle Scholar
  74. Reilly T, Atkinson G, Edwards B et al (2007a) Coping with jet-lag: a position statement for the European College of Sport Science. Eur J Sport Sci 7:1–7. doi: 10.1080/17461390701216823 CrossRefGoogle Scholar
  75. Reilly T, Atkinson G, Edwards B et al (2007b) Diurnal variation in temperature, mental and physical performance, and tasks specifically related to football (soccer). Chronobiol Int 24:507–519. doi: 10.1080/07420520701420709 PubMedCrossRefGoogle Scholar
  76. Samuels C (2008) Sleep, recovery, and performance: the new frontier in high-performance athletics. Neurol Clin 26:169–180. doi: 10.1016/j.ncl.2007.11.012 PubMedCrossRefGoogle Scholar
  77. Sedliak M, Finni T, Cheng S et al (2007) Effect of time-of-day-specific strength training on serum hormone concentrations and isometric strength in men. Chronobiol Int 24:1159–1177. doi: 10.1080/07420520701800686 PubMedCrossRefGoogle Scholar
  78. Smith R, Guilleminault C, Efron B (1997) Circadian rhythms and enhanced athletic performance in the National Football League. Sleep 20:362–365PubMedGoogle Scholar
  79. Souissi N, Gauthier A, Sesboue B et al (2002) Effects of regular training at the same time of day on diurnal fluctuations in muscular performance. J Sports Sci 20:929–937. doi: 10.1080/026404102320761813 PubMedCrossRefGoogle Scholar
  80. Souissi N, Sesboue B, Gauthier A et al (2003) Effects of one night’s sleep deprivation on anaerobic performance the following day. Eur J Appl Physiol 89:359–366. doi: 10.1007/s00421-003-0793-7 PubMedCrossRefGoogle Scholar
  81. Souissi N, Gauthier A, Sesboue B et al (2004) Circadian rhythms in two types of anaerobic cycle leg exercise: force-velocity and 30-s Wingate tests. Int J Sports Med 25:14–19. doi: 10.1055/s-2003-45226 PubMedCrossRefGoogle Scholar
  82. Souissi N, Bessot N, Chamari K et al (2007) Effect of time of day on aerobic contribution to the 30-s wingate test performance. Chronobiol Int 24:739–748. doi: 10.1080/07420520701535811 PubMedCrossRefGoogle Scholar
  83. Steenland K, Deddens J (1997) Effect of travel and rest on performance of professional basketball players. Sleep 20:366–369PubMedGoogle Scholar
  84. Van Dongen H, Dinges D (2005) Sleep, circadian rhythms, and psychomotor vigilance. Clin Sports Med 24:237–249. doi: 10.1016/j.csm.2004.12.007 PubMedCrossRefGoogle Scholar
  85. Waterhouse J, Minors D, Åkerstedt T (2001) Rhythms of human performance. In: Takahashi J, Turek F, Moore R et al (eds) Handbook of behavioral neurobiology: circadian clocks. Kluver Academic/Plenum Publishers, New York, pp 571–601Google Scholar
  86. Waterhouse J, Reilly T, Edwards B (2004) The stress of travel. J Sports Sci 22:946–965. doi: 10.1080/02640410400000264 PubMedCrossRefGoogle Scholar
  87. Wyse J, Mercer T, Gleeson N (1994) Time-of-day dependence of isokinetic leg strength and associated interday variability. Br J Sports Med 28:167–170. doi: 10.1136/bjsm.28.3.167 PubMedCrossRefGoogle Scholar
  88. Youngstedt S, O’Connor P (1999) The influence of air travel on athletic performance. Sports Med 28:197–207. doi: 10.2165/00007256-199928030-00004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations