Thirteen days of “live high–train low” does not affect prooxidant/antioxidant balance in elite swimmers

  • Vincent Pialoux
  • Rémi Mounier
  • Julien V. Brugniaux
  • Edmond Rock
  • Andrzej Mazur
  • Jean-Paul Richalet
  • Paul Robach
  • Jean Coudert
  • Nicole Fellmann
Original Article


We investigated the impact of 13 days of “living high–training low” (LHTL) on the antioxidant/prooxidant balance in elite endurance swimmers. Eighteen elite swimmers from the French Swimming Federation were submitted to a 13-day endurance training and divided into two groups: one group trained at 1,200 m and lived in hypoxia (2,500–3,000 m simulated altitude) and the second group trained and lived at 1,200 m. The subjects performed an acute hypoxic test (10 min at 4,800 m) before and 1 day after the training period. Plasma levels of advanced oxidation protein products (AOPP), malondialdehydes (MDA), ferric reducing antioxidant power (FRAP), and lipid-soluble antioxidants were measured before and after the 4,800 m tests. After the training, MDA and AOPP responses to the 4,800 m test were lower than before training for both groups (+10 vs. +2%; P = 0.01 for MDA and +80 vs. +14%; P = 0.01 for AOPP). Thirteen days of LHTL did not modify antioxidant status (FRAP and lipid-soluble antioxidants) despite intakes in vitamins A and E below the recommended daily allowances. The LHTL did not affect the antioxidant status in elite swimmers; however, the normoxic endurance training induced preconditioning mechanisms in response to the 4,800 m test.


Intermittent hypoxia Swimming training Oxidative stress Antioxidant status 



We thank the subjects for their contribution. We also thank Drs. Glen Foster and Andrew Beaudin for reviewing the manuscript. This study was funded by the “International Olympic Committee”, the “Ministère des sports français” and the “Direction Régionale de la Jeunesse et des Sports de la Région Auvergne”.

Conflict of interest statement

The authors declare that they have no conflict of interest.


  1. ASSFA (2003) Compléments et suppléments pour le sportif. In: Apports nutritionnels conseillés pour la population française (3e édition) pp. 380–382 [Tec et Doc eds] ParisGoogle Scholar
  2. Bailey DM, Davies B, Young IS (2001a) Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci (Lond) 101:465–475. doi: 10.1042/CS20010065 CrossRefGoogle Scholar
  3. Bailey DM, Davies B, Young IS, Hullin DA, Seddon PS (2001b) A potential role for free radical-mediated skeletal muscle soreness in the pathophysiology of acute mountain sickness. Aviat Space Environ Med 72:513–521PubMedGoogle Scholar
  4. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. doi: 10.1006/abio.1996.0292 PubMedCrossRefGoogle Scholar
  5. Brugniaux JV, Schmitt L, Robach P, Jeanvoine H, Zimmermann H, Nicolet G, Duvallet A, Fouillot JP, Richalet JP (2006a) Living high–training low: tolerance and acclimatization in elite endurance athletes. Eur J Appl Physiol 96:66–77. doi: 10.1007/s00421-005-0065-9 PubMedCrossRefGoogle Scholar
  6. Brugniaux JV, Schmitt L, Robach P et al (2006b) Eighteen days of “living high, training low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol 100:203–211. doi: 10.1152/japplphysiol.00808.2005 PubMedCrossRefGoogle Scholar
  7. Chen CF, Tsai SY, Ma MC, Wu MS (2003) Hypoxic preconditioning enhances renal superoxide dismutase levels in rats. J Physiol 552:561–569. doi: 10.1113/jphysiol.2003.045559 PubMedCrossRefGoogle Scholar
  8. Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72:637S–646SPubMedGoogle Scholar
  9. Das DK, Maulik N (2006) Cardiac genomic response following preconditioning stimulus. Cardiovasc Res 70:254–263. doi: 10.1016/j.cardiores.2006.02.023 PubMedCrossRefGoogle Scholar
  10. Di MC, Scarpelli P, Penco M, Tozzi-Ciancarelli MG (2004) Possible involvement of plasma antioxidant defences in training-associated decrease of platelet responsiveness in humans. Eur J Appl Physiol 91:406–412. doi: 10.1007/s00421-003-0998-9 CrossRefGoogle Scholar
  11. Gore CJ, Hahn A, Rice A et al (1998) Altitude training at 2690 m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists. J Sci Med Sport 1:156–170. doi: 10.1016/S1440-2440(98)80011-X PubMedCrossRefGoogle Scholar
  12. Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819. doi: 10.1113/expphysiol.2006.033506 PubMedCrossRefGoogle Scholar
  13. Jones RD, Hancock JT, Morice AH (2000) NADPH oxidase: a universal oxygen sensor? Free Radic Biol Med 29:416–424. doi: 10.1016/S0891-5849(00)00320-8 PubMedCrossRefGoogle Scholar
  14. Jordan W, Cohrs S, Degner D, Meier A, Rodenbeck A, Mayer G, Pilz J, Ruther E, Kornhuber J, Bleich S (2006) Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome. J Neural Transm 113:239–254. doi: 10.1007/s00702-005-0316-2 PubMedCrossRefGoogle Scholar
  15. Koechlin C, Couillard A, Simar D, Cristol JP, Bellet H, Hayot M, Prefaut C (2004) Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med 169:1022–1027. doi: 10.1164/rccm.200310-1465OC PubMedCrossRefGoogle Scholar
  16. Le Moulenc N, Deheeger M, Preziosi P, Monterio P, Valeix P, Rolland-Cachera MF, Potier de Gourcy G, Christides JP, Galan P, Hercberg S (1996) Validation du manuel photo utilisé dans l’enquête alimentaire SU.VI.MAX. Cah Nutr Diet 3:158–164Google Scholar
  17. Lefevre G, Beljean-Leymarie M, Beyerle F, Bonnefont-Rousselot D, Cristol JP, Therond P, Torreilles J (1998) Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances. Ann Biol Clin (Paris) 56:305–319Google Scholar
  18. Levine BD (2002) Intermittent hypoxic training: fact and fancy. High Alt Med Biol 3:177–193. doi: 10.1089/15270290260131911 PubMedCrossRefGoogle Scholar
  19. Levine BD, Stray-Gundersen J (1997) “Living high–training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83:102–112PubMedGoogle Scholar
  20. Lyan B, Azais-Braesco V, Cardinault N, Tyssandier V, Borel P, Alexandre-Gouabau MC, Grolier P (2001) Simple method for clinical determination of 13 carotenoids in human plasma using an isocratic high-performance liquid chromatographic method. J Chromatogr B Biomed Sci Appl 751:297–303. doi: 10.1016/S0378-4347(00)00488-6 PubMedCrossRefGoogle Scholar
  21. Marsh SA, Laursen PB, Coombes JS (2006) Effects of antioxidant supplementation and exercise training on erythrocyte antioxidant enzymes. Int J Vitam Nutr Res 76:324–331. doi: 10.1024/0300-9831.76.5.324 PubMedCrossRefGoogle Scholar
  22. Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, Haga S, Ji LL, Ohno H (2001) Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol 84:1–6. doi: 10.1007/s004210000342 PubMedCrossRefGoogle Scholar
  23. Neidlinger NA, Hirvela ER, Skinner RA, Larkin SK, Harken AH, Kuypers FA (2005) Postinjury serum secretory phospholipase A2 correlates with hypoxemia and clinical status at 72 hours. J Am Coll Surg 200:173–178. doi: 10.1016/j.jamcollsurg.2004.10.010 PubMedCrossRefGoogle Scholar
  24. Ohno H, Yahata T, Sato Y, Yamamura K, Taniguchi N (1988) Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men. Eur J Appl Physiol Occup Physiol 57:173–176. doi: 10.1007/BF00640658 PubMedCrossRefGoogle Scholar
  25. Palazzetti S, Richard MJ, Favier A, Margaritis I (2003) Overloaded training increases exercise-induced oxidative stress and damage. Can J Appl Physiol 28:588–604PubMedGoogle Scholar
  26. Pialoux V, Mounier R, Ponsot E, Rock E, Mazur A, Dufour S, Richard R, Richalet JP, Coudert J, Fellmann N (2006) Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance. Eur J Clin Nutr 60:1345–1354. doi: 10.1038/sj.ejcn.1602462 PubMedCrossRefGoogle Scholar
  27. Pialoux V, Mounier R, Brown AD, Steinback CD, Rawling JM, Poulin MJ (2008a) Relationship between oxidative stress and HIF-1a mRNA during sustained hypoxia in humans. Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2008.10.047
  28. Pialoux V, Mounier R, Rock E, Mazur A, Schmitt L, Richalet JP, Robach P, Brugniaux J, Coudert J, Fellmann N (2008b) Effects of the ‘live high–train low’ method on prooxidant/antioxidant balance on elite athletes. Eur J Clin Nutr. doi: 10.1038/ejcn.2008.30
  29. Pialoux V, Mounier R, Rock E, Mazur A, Robach P, Schmitt L, Richalet JP, Coudert J, Fellmann N (2008c) Effects of acute hypoxia on prooxidant/antioxidant balance on elite athletes. Int J Sports Med 29:1–7. doi: 10.1055/s-0028-1103284 Google Scholar
  30. Reid MB, Moody MR (1994) Dimethyl sulfoxide depresses skeletal muscle contractility. J Appl Physiol 76:2186–2190PubMedGoogle Scholar
  31. Robach P, Schmitt L, Brugniaux JV et al (2006) Living high–training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. Eur J Appl Physiol 96:423–433. doi: 10.1007/s00421-005-0089-1 PubMedCrossRefGoogle Scholar
  32. Robertson JD, Maughan RJ, Duthie GG, Morrice PC (1991) Increased blood antioxidant systems of runners in response to training load. Clin Sci (Lond) 80:611–618Google Scholar
  33. Sen CK (2001) Antioxidants in exercise nutrition. Sports Med 31:891–908. doi: 10.2165/00007256-200131130-00001 PubMedCrossRefGoogle Scholar
  34. Sinha R, Patterson BH, Mangels AR, Levander OA, Gibson T, Taylor PR, Block G (1993) Determinants of plasma vitamin E in healthy males. Cancer Epidemiol Biomarkers Prev 2:473–479PubMedGoogle Scholar
  35. Sohn HY, Krotz F, Gloe T, Keller M, Theisen K, Klauss V, Pohl U (2003) Differential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine. Cardiovasc Res 58:638–646. doi: 10.1016/S0008-6363(03)00262-1 PubMedCrossRefGoogle Scholar
  36. Subudhi AW, Jacobs KA, Hagobian TA, Fattor JA, Fulco CS, Muza SR, Rock PB, Hoffman AR, Cymerman A, Friedlander AL (2004) Antioxidant supplementation does not attenuate oxidative stress at high altitude. Aviat Space Environ Med 75:881–888PubMedGoogle Scholar
  37. Thurnham DI, Davies JA, Crump BJ, Situnayake RD, Davis M (1986) The use of different lipids to express serum tocopherol: lipid ratios for the measurement of vitamin E status. Ann Clin Biochem 23(Pt 5):514–520PubMedGoogle Scholar
  38. Vollaard NB, Shearman JP, Cooper CE (2005) Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports Med 35:1045–1062. doi: 10.2165/00007256-200535120-00004 PubMedCrossRefGoogle Scholar
  39. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, scamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313. doi: 10.1038/ki.1996.186 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vincent Pialoux
    • 1
  • Rémi Mounier
    • 1
  • Julien V. Brugniaux
    • 2
  • Edmond Rock
    • 3
  • Andrzej Mazur
    • 3
  • Jean-Paul Richalet
    • 2
  • Paul Robach
    • 4
  • Jean Coudert
    • 1
  • Nicole Fellmann
    • 1
  1. 1.Laboratoire de Biologie des Activités Physiques et Sportives, Faculté de MédecineClermont-FerrandFrance
  2. 2.Laboratoire « Réponses cellulaires et fonctionnelles à l’hypoxie », EA 2363, A.R.P.E.Bobigny CedexFrance
  3. 3.Equipe Stress Métabolique et MicronutrimentsUnité de Nutrition Humaine UMR 1019, INRASaint Genès ChampanelleFrance
  4. 4.Ecole Nationale de Ski et d’AlpinismeChamonixFrance

Personalised recommendations