European Journal of Applied Physiology

, Volume 106, Issue 3, pp 353–363 | Cite as

Changes in upper body muscle activity with increasing double poling velocities in elite cross-country skiing

  • Stefan Josef LindingerEmail author
  • Hans-Christer Holmberg
  • Erich Müller
  • Walter Rapp
Original Article


The purpose of this study was to investigate whether the stretch-shortening cycle (SSC) contraction is integrated in neuromuscular activation in upper body muscles during double poling in cross-country skiing. Thirteen elite skiers performed double poling roller-skiing at increasing treadmill velocities of 9, 15, 21, 27 km h−1 and their individual maximal velocity. Elbow angle, axial pole force and surface EMG in the triceps brachii, pectoralis major, latissimus dorsi and teres major muscle were recorded. Increases in peak pole force, rate of force development and elbow flexion angular velocities were identified (< 0.05). The mean MVC-normalized EMG amplitudes increased during the pre-activation phase before pole plant, elbow flexion and the reflex-mediated phase between 30 and 120 ms after pole plant due to velocity increases (< 0.05). It is thus suggested that elite cross-country skiers use SSC during double poling, particularly in the triceps muscle in order to generate high forces.


Nordic skiing EMG Pre-activation Stretch-shortening cycle Elbow joint Muscle stiffness 



We thank Dr. Vojko Strojnik at University of Ljubljana, Slovenia for his valuable comments on the manuscript, and the Swedish Winter Sports Research Centre for providing us the facility for this study. The authors also thank the athletes and coaches for their participation, enthusiasm, and cooperation in this study. This study was supported by the Swedish Olympic Committee.


  1. Acierno SP, Baratta RV, Solowonow M (1995) A practical guide to electromyography for biomechanists. Louisiana State University, New OrleansGoogle Scholar
  2. Allum JH (1975) Responses to load disturbances in human shoulder muscles: the hypothesis that one component is a pulse test information signal. Exp Brain Res 22:307–326. doi: 10.1007/BF00234772 PubMedCrossRefGoogle Scholar
  3. Aura O, Komi PV (1986) Effects of prestretch intensity on mechanical efficiency of positive work and on elastic behavior of skeletal muscle in stretch-shortening cycle exercise. Int J Sports Med 7:137–143. doi: 10.1055/s-2008-1025751 PubMedCrossRefGoogle Scholar
  4. Avela J, Finni J, Komi PV (2006) Excitability of the soleus reflex arc during intensive stretch-shortening cycle exercise in two power-trained athlete groups. Eur J Appl Physiol 97:486–493. doi: 10.1007/s00421-006-0209-6 PubMedCrossRefGoogle Scholar
  5. Beltman JG, Sargeant AJ, van Mechelen W, de Haan A (2004) Voluntary activation level and muscle fiber recruitment of human quadriceps during lengthening contractions. J Appl Physiol 97:619–626. doi: 10.1152/japplphysiol.01202.2003 PubMedCrossRefGoogle Scholar
  6. Bober T, Jaskolski E, Nowacki Z (1980) Study of eccentric-concentric contraction of the upper extremity muscles. J Biomech 13:135–138. doi: 10.1016/0021-9290(80)90187-6 PubMedCrossRefGoogle Scholar
  7. Bosco C, Komi PV, Ito A (1981) Prestretch potentiation of human skeletal muscle during ballistic movement. Acta Physiol Scand 111:135–140. doi: 10.1111/j.1748-1716.1981.tb06716.x PubMedCrossRefGoogle Scholar
  8. Bosco C, Tihanyi J, Komi PV, Fekete G, Apor P (1982) Store and recoil of elastic energy in slow and fast types of human skeletal muscles. Acta Physiol Scand 116:343–349. doi: 10.1111/j.1748-1716.1982.tb07152.x PubMedCrossRefGoogle Scholar
  9. Boyer KA, Nigg BM (2004) Muscle activity in the leg is tuned in response to impact force characteristics. J Biomech 37:1583–1588. doi: 10.1016/j.jbiomech.2004.01.002 PubMedCrossRefGoogle Scholar
  10. Buchthal F, Schmalbruch H (1970) Contraction times and fibre types in intact human muscle. Acta Physiol Scand 79:435–452. doi: 10.1111/j.1748-1716.1970.tb04744.x PubMedCrossRefGoogle Scholar
  11. Cavagna GA (1977) Storage and utilization of elastic energy in skeletal muscle. Exerc Sport Sci Rev 5:89–129. doi: 10.1249/00003677-197700050-00004 PubMedCrossRefGoogle Scholar
  12. Cavagna GA, Saibene FP, Margaria R (1964) Mechanical work in running. J Appl Physiol 19:249–256PubMedGoogle Scholar
  13. Chalmers GR (2008) Can fast-twitch muscle fibres be selectively recruited during lengthening contractions? Review and applications to sport movements. Sports Biomech 7:137–157. doi: 10.1080/14763140701683023 PubMedCrossRefGoogle Scholar
  14. Dietz V, Schmidtbleicher D, Noth J (1979) Neuronal mechanisms of human locomotion. J Neurophysiol 42:1212–1222PubMedGoogle Scholar
  15. Eberstein A, Goodgold J (1968) Slow and fast twitch fibres in human skeletal muscle. Am J Physiol 215:7Google Scholar
  16. Garnett R, O’Donovan MJ, Stephens JA, Taylor A (1978) Evidence for the existence of three motor unit types in normal human gastrocnemius. J Physiol 280:65 proceedingsGoogle Scholar
  17. Gollhofer A, Kyrolainen H (1991) Neuromuscular control of the human leg extensor muscles in jump exercises under various stretch-load conditions. Int J Sports Med 12:34–40. doi: 10.1055/s-2007-1024652 PubMedCrossRefGoogle Scholar
  18. Gollhofer A, Schmidtbleicher D, Dietz V (1984) Regulation of muscle stiffness in human locomotion. Int J Sports Med 5:19–22. doi: 10.1055/s-2008-1025874 PubMedCrossRefGoogle Scholar
  19. Gollhofer A, Komi PV, Miyashita M, Aura O (1987) Fatigue during stretch-shortening cycle exercises: changes in mechanical performance of human skeletal muscle. Int J Sports Med 8:71–78. doi: 10.1055/s-2008-1025644 PubMedCrossRefGoogle Scholar
  20. Gollhofer A, Horstmann GA, Schmidtbleicher D, Schonthal D (1990) Reproducibility of electromyographic patterns in stretch-shortening type contractions. Eur J Appl Physiol Occup Physiol 60:7–14. doi: 10.1007/BF00572179 PubMedCrossRefGoogle Scholar
  21. Gollhofer A, Strojnik V, Rapp W, Schweizer L (1992) Behaviour of triceps surae muscle–tendon complex in different jump conditions. Eur J Appl Physiol Occup Physiol 64:283–291. doi: 10.1007/BF00636213 PubMedCrossRefGoogle Scholar
  22. Gottlieb GL, Agarwal GC, Jaeger RJ (1981) Response to sudden torques about ankle in man IV. A functional role of alpha-gamma linkage. J Neurophysiol 46:179–190PubMedGoogle Scholar
  23. Grezios AK, Gissis IT, Sotiropoulos AA, Nikolaidis DV, Souglis AG (2006) Muscle-contraction properties in overarm throwing movements. J Strength Cond Res 20:117–123. doi: 10.1519/R-15624.1 PubMedCrossRefGoogle Scholar
  24. Henneman E, Olson CB (1965) Relations between structure and function in the design of skeletal muscles. J Neurophysiol 28:581–598. doi: 10.1159/000161811 PubMedGoogle Scholar
  25. Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580PubMedGoogle Scholar
  26. Hermens HJ, Freriks B, Merletti R, Stegeman DF, Blok JH, Rau G, Disselhorst-Klug C, Hägg G (1999) European recommendations for surface electromyography Results of the SENIAM project. Roessingh Research and Development, EnschedeGoogle Scholar
  27. Hoffer JA, Andreassen S (1981) Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components. J Neurophysiol 45:267–285PubMedGoogle Scholar
  28. Holmberg HC, Lindinger S, Stoggl T, Eitzlmair E, Muller E (2005) Biomechanical analysis of double poling in elite cross-country skiers. Med Sci Sports Exerc 37:807–818. doi: 10.1249/01.MSS.0000162615.47763.C8 PubMedCrossRefGoogle Scholar
  29. Holmberg HC, Lindinger S, Stoggl T, Bjorklund G, Muller E (2006) Contribution of the legs to double-poling performance in elite cross-country skiers. Med Sci Sports Exerc 38:1853–1860. doi: 10.1249/01.mss.0000230121.83641.d1 PubMedCrossRefGoogle Scholar
  30. Ishikawa M, Komi PV (2004) Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol 96:848–852. doi: 10.1152/japplphysiol.00948.2003 PubMedCrossRefGoogle Scholar
  31. Ishikawa M, Komi PV (2007) The role of the stretch reflex in the gastrocnemius muscle during human locomotion at various speeds. J Appl Physiol 103:1030–1036. doi: 10.1152/japplphysiol.00277.2007 PubMedCrossRefGoogle Scholar
  32. Ishikawa M, Komi PV (2008) Muscle fascicle and tendon behavior during human locomotion revisited. Exerc Sport Sci Rev 36:193–199. doi: 10.1097/JES.0b013e3181878417 PubMedCrossRefGoogle Scholar
  33. Ishikawa M, Niemela E, Komi PV (2005) Interaction between fascicle and tendinous tissues in short-contact stretch-shortening cycle exercise with varying eccentric intensities. J Appl Physiol 99:217–223. doi: 10.1152/japplphysiol.01352.2004 PubMedCrossRefGoogle Scholar
  34. Ito A, Komi PV, Sjodin B, Bosco C, Karlsson J (1983) Mechanical efficiency of positive work in running at different speeds. Med Sci Sports Exerc 15:299–308. doi: 10.1249/00005768-198304000-00009 PubMedGoogle Scholar
  35. Komi PV (1984) Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exerc Sport Sci Rev 12:81–121. doi: 10.1249/00003677-198401000-00006 PubMedCrossRefGoogle Scholar
  36. Komi PV (2000) Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. J Biomech 33:1197–1206. doi: 10.1016/S0021-9290(00)00064-6 PubMedCrossRefGoogle Scholar
  37. Komi PV, Gollhofer A (1997) Stretch reflexes can have an important role in force enhancement during SSC exercise. J Appl Biomech 13:451–460Google Scholar
  38. Komi PV, Norman RW (1987) Preloading of the thrust phase in cross-country skiing. Int J Sports Med 8(Suppl 1):48–54. doi: 10.1055/s-2008-1025703 PubMedCrossRefGoogle Scholar
  39. Komi PV, Gollhofer A, Schmidtbleicher D, Frick U (1987) Interaction between man and shoe in running: considerations for a more comprehensive measurement approach. Int J Sports Med 8:196–202. doi: 10.1055/s-2008-1025655 PubMedCrossRefGoogle Scholar
  40. Konrad P (2005) The ABC of EMG. Noraxon Inc., Scottsdale, pp 58Google Scholar
  41. Kuitunen S, Komi PV, Kyrolainen H (2002) Knee and ankle joint stiffness in sprint running. Med Sci Sports Exerc 34:166–173. doi: 10.1097/00005768-200201000-00025 PubMedCrossRefGoogle Scholar
  42. Kyröläinen H, Komi PV, Belli A (1999) Changes in muscle activity patterns and kinetics with increasing running speed. J Strength Cond Res 13:7. doi: 10.1519/1533-4287(1999)013<0400:CIMAPA>2.0.CO;2
  43. Kyröläinen H, Finni T, Avela J, Komi PV (2003) Neuromuscular behaviour of the triceps surae muscle–tendon complex during running and jumping. Int J Sports Med 24:153–155. doi: 10.1055/s-2003-39082 PubMedCrossRefGoogle Scholar
  44. Kyröläinen H, Avela J, Komi PV (2005) Changes in muscle activity with increasing running speed. J Sports Sci 23:1101–1109. doi: 10.1080/02640410400021575 PubMedCrossRefGoogle Scholar
  45. Magnusson SP, Narici MV, Maganaris CN, Kjaer M (2008) Human tendon behaviour and adaptation, in vivo. J Physiol 586:71–81. doi: 10.1113/jphysiol.2007.139105 PubMedCrossRefGoogle Scholar
  46. Matthews PB (1984) Evidence from the use of vibration that the human long-latency stretch reflex depends upon spindle secondary afferents. J Physiol 348:383–415PubMedGoogle Scholar
  47. Matthews PB, Stein RB (1969) The sensitivity of muscle spindle afferents to small sinusoidal changes of length. J Physiol 200:723–743PubMedGoogle Scholar
  48. Mero A, Komi PV (1987) Electromyographic activity in sprinting at speeds ranging from sub-maximal to supra-maximal. Med Sci Sports Exerc 19:266–274. doi: 10.1249/00005768-198706000-00014 PubMedGoogle Scholar
  49. Mittelstadt SW, Hoffman MD, Watts PB, O’Hagan KP, Sulentic JE, Drobish KM, Gibbons TP, Newbury VS, Clifford PS (1995) Lactate response to uphill roller skiing: diagonal stride versus double pole techniques. Med Sci Sports Exerc 27:1563–1568PubMedGoogle Scholar
  50. Moritz CT, Farley CT (2005) Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion. J Exp Biol 208:939–949. doi: 10.1242/jeb.01472 PubMedCrossRefGoogle Scholar
  51. Mrdakovic V, Ilic DB, Jankovic N, Rajkovic Z, Stefanovic D (2008) Pre-activity modulation of lower extremity muscles within different types and heights of deep jump. J Sports Sci Med 7:269–278Google Scholar
  52. Newton RU, Murphy AJ, Humphries BJ, Wilson GJ, Kraemer WJ, Hakkinen K (1997) Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol 75:333–342. doi: 10.1007/s004210050169 PubMedCrossRefGoogle Scholar
  53. Nicol C, Komi PV (1998) Significance of passively induced stretch reflexes on achilles tendon force enhancement. Muscle Nerve 21:1546–1548. doi: 10.1002/(SICI)1097-4598(199811)21:11<1546::AID-MUS29>3.0.CO;2-X PubMedCrossRefGoogle Scholar
  54. Nicol C, Avela J, Komi PV (2006) The stretch-shortening cycle: a model to study naturally occurring neuromuscular fatigue. Sports Med 36:977–999. doi: 10.2165/00007256-200636110-00004 PubMedCrossRefGoogle Scholar
  55. Nilsson J, Thorstensson A, Halbertsma J (1985) Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. Acta Physiol Scand 123:457–475. doi: 10.1111/j.1748-1716.1985.tb07612.x PubMedCrossRefGoogle Scholar
  56. Norman RW, Komi PV (1985) Differences in body segment energy utilization between world-class and recreational cross-country skiers. Int J Sport Biomech 1:253–262Google Scholar
  57. Perrey S, Millet GY, Candau R, Rouillon JD (1998) Stretch-shortening cycle in roller ski skating: effects of technique. Int J Sports Med 19:513–520. doi: 10.1055/s-2007-971953 PubMedCrossRefGoogle Scholar
  58. Piriyaprasarth P, Morris ME, Winter A, Bialocerkowski AE (2008) The reliability of knee joint position testing using electrogoniometry. BMC Musculoskelet Disord 9:6. doi: 10.1186/1471-2474-9-6 PubMedCrossRefGoogle Scholar
  59. Rowe PJ, Myles CM, Hillmann SJ, Hazlewood ME (2001) Validation of flexible electrogoniometers as a measure of joint kinematics. Physiotherapy 87:479–488. doi: 10.1016/S0031-9406(05)60695-5 CrossRefGoogle Scholar
  60. Saltin B (1997) The physiology of competitive c.c. skiing across a four decade perspective; with a note on training induced adaptations and role of training at medium altitude. In: Müller EH, Kornexl E, Raschner C (eds) Science and skiing. Chapman and Hall, Cambridge, pp 435–469Google Scholar
  61. Smith GA, Fewster JB, Braudt SM (1996) Double poling kinematics and performance in cross-country skiing. J Appl Biomech 12:88–103Google Scholar
  62. Sousa F, Ishikawa M, Vilas-Boas JP, Komi PV (2007) Intensity- and muscle-specific fascicle behavior during human drop jumps. J Appl Physiol 102:382–389. doi: 10.1152/japplphysiol.00274.2006 PubMedCrossRefGoogle Scholar
  63. Stoeggl T, Lindinger S, Muller E (2006) Reliability and validity of test concepts for the cross-country skiing sprint. Med Sci Sports Exerc 38:586–591. doi: 10.1249/01.mss.0000190789.46685.22 CrossRefGoogle Scholar
  64. Stoeggl T, Lindinger S, Muller E (2007a) Analysis of a simulated sprint competition in classical cross country skiing. Scand J Med Sci Sports 17:362–372Google Scholar
  65. Stoeggl T, Lindinger S, Muller E (2007b) Evaluation of an upper-body strength test for the cross-country skiing sprint. Med Sci Sports Exerc 39:1160–1169. doi: 10.1249/mss.0b013e3180537201 CrossRefGoogle Scholar
  66. Vahasoyrinki P, Komi PV, Seppala S, Ishikawa M, Kolehmainen V, Salmi JA, Linnamo V (2008) Effect of skiing speed on ski and pole forces in cross-country skiing. Med Sci Sports Exerc 40:1111–1116PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Stefan Josef Lindinger
    • 1
    • 2
    Email author
  • Hans-Christer Holmberg
    • 3
    • 4
  • Erich Müller
    • 1
    • 2
  • Walter Rapp
    • 5
  1. 1.Department of Sport Science and KinesiologyUniversity of SalzburgSalzburgAustria
  2. 2.Christian Doppler Laboratory “Biomechanics in Skiing”University of SalzburgSalzburgAustria
  3. 3.Swedish Winter Sports Research Centre, Department of Health SciencesMid Sweden UniversityÖstersundSweden
  4. 4.Swedish Olympic CommitteeStockholmSweden
  5. 5.Department of Sports Medicine, Medical University ClinicUniversity of TübingenTübingenGermany

Personalised recommendations