Effects of menstrual cycle, oral contraception, and training on exercise-induced changes in circulating DHEA-sulphate and testosterone in young women

  • C. Enea
  • N. Boisseau
  • M. Ottavy
  • J. Mulliez
  • C. Millet
  • I. Ingrand
  • V. Diaz
  • B. Dugué
Original Article

Abstract

The objective of this study was to ascertain the effects of menstrual cycle, oral contraception, and training status on the exercise-induced changes in circulating DHEA-sulphate and testosterone in young women. Twenty-eight healthy women were assigned to an untrained group (n = 16) or a trained group (n = 12) depending on their training background. The untrained group was composed of nine oral contraceptive users (OC+) and seven eumenorrheic women (OC−). The trained group was composed of OC+ subjects only. All the OC+ subjects were taking the same low-dose oral contraception. Three laboratory sessions were organised in a randomised order: a prolonged exercise test until exhaustion, a short-term exhaustive exercise test, and a control session. Blood specimens were collected before, during and after the exercise tests and at the same time of the day during the control session. Basal circulating testosterone was significantly lower in trained as compared to untrained subjects. In all subjects, the prolonged exhaustive exercise induced a significant increase in circulating DHEA-s and testosterone. The short-term exercise induced a significant increase in circulating DHEA-s in untrained eumenorrheic and in trained OC users only. Menstrual phases in OC− did not influence the responses. It was found that exhaustive physical exercise induced an increase in circulating DHEA-s and testosterone in young women. Oral contraception may limit short-term exercise-induced changes.

Keywords

Androgens Biological factors Exercise Female physiology Steroids 

Notes

Acknowledgments

This research was supported by the World Anti-Doping Agency (WADA) (grant no 05D17BD), the French Ministry of National Education and Research, and the French Ministry of Health and Sports The authors express their sincere thanks to the volunteers who participated in this study.

References

  1. Abraham G (1974) Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. J Clin Endocrinol Metab 39:340–346PubMedGoogle Scholar
  2. Baker E, Mathur R, Kirk R, Landgrebe S, Moody L, Williamson H (1982) Plasma gonadotropins, prolactin, and steroid hormone concentrations in female runners immediately after a long-distance run. Fertil Steril 38:38–41PubMedGoogle Scholar
  3. Bayle ML, Enea C, Goetinck P, Lafay F, Boisseau N, Dugué B, Flament-Waton MM, Grenier-Loustalot MF (2009) Quantitative analysis of DHEA and androsterone in female urine: application to the evaluation of sport and contraceptive pill intake influences. Anal Bioanal Chem (in press)Google Scholar
  4. Bonen A, Keizer H (1987) Pituitary, ovarian, and adrenal hormone responses to marathon running. Int J Sports Med 8(Suppl 3):161–167. doi: 10.1055/s-2008-1025723 PubMedCrossRefGoogle Scholar
  5. Cadoux-Hudson T, Few J, Imms F (1985) The effect of exercise on the production and clearance of testosterone in well trained young men. Eur J Appl Physiol Occup Physiol 54:321–325. doi: 10.1007/BF00426153 PubMedCrossRefGoogle Scholar
  6. Carli G, Martelli G, Viti A, Baldi L, Bonifazi M, Lupo Di Prisco C (1983) The effect of swimming training on hormone levels in girls. J Sports Med Phys Fitness 23(1):45–51PubMedGoogle Scholar
  7. Coenen C, Thomas C, Borm G, Hollanders J, Rolland R (1996) Changes in androgens during treatment with four low-dose contraceptives. Contraception 53:171–176. doi: 10.1016/0010-7824(96)00006-6 PubMedCrossRefGoogle Scholar
  8. Coenen C, Thomas C, Borm G, Rolland R (1995) Comparative evaluation of the androgenicity of four low-dose, fixed-combination oral contraceptives. Int J Fertil Menopausal Stud 40(Suppl 2):92–97PubMedGoogle Scholar
  9. Compston J (2001) Sex steroids and bone. Physiol Rev 81:419–447PubMedGoogle Scholar
  10. Consitt L, Copeland J, Tremblay M (2001) Hormone responses to resistance vs endurance exercise in premenopausal females. Can J Appl Physiol 26:574–587PubMedGoogle Scholar
  11. Dill D, Costill D (1974) Calculation of percentage changes in volumes of blood, plasma and red cells in dehydration. J Appl Physiol 37(2):247–248PubMedGoogle Scholar
  12. Dugué B, Leppänen E, Zhou H-P, Gräsbeck R (1992) Preanalytical factors and standardised specimen collection: influence of psychological stress. Scand J Clin Lab Invest 52:43–50. doi: 10.3109/00365519209085439 PubMedCrossRefGoogle Scholar
  13. Dugué B, Leppänen E, Gräsbeck R (1996) Preanalytical factors and the measurement of cytokines in human subjects. Int J Clin Lab Res 26:99–105. doi: 10.1007/BF02592351 PubMedCrossRefGoogle Scholar
  14. Enea C, Boisseau N, Diaz V, Dugué B (2008) Biological factors and the determination of androgens in female subjects. Steroids 73:1203–1216. doi: 10.1016/j.steroids.2008.06.009 PubMedCrossRefGoogle Scholar
  15. Enea C, Boisseau N, Bayle ML, Flament MM, Denjean A, Diaz V, Dugué B (2009) Nandrolone excretion after exhaustive exercises in females: influence of menstrual cycle, oral contraception and training level. Scand J Med Sci Sports (in press). doi: 10.1111/j.1600-0838.2008.00877.x
  16. Fahrner C, Hackney A (1998) Effects of endurance exercise on free testosterone concentration and the binding affinity of sex hormone binding globulin (SHBG). Int J Sports Med 19:12–15. doi: 10.1055/s-2007-971872 PubMedCrossRefGoogle Scholar
  17. Ferrucci L, Maggio M, Bandinelli S, Basaria S, Lauretani F, Ble A, Valenti G, Ershler W, Guralnik J, Longo D (2006) Low testosterone levels and the risk of anemia in older men and women. Arch Intern Med 166(13):1380–1388. doi: 10.1001/archinte.166.13.1380 PubMedCrossRefGoogle Scholar
  18. Filaire E, Duché P, Lac G (1998) Effects of amount of training on the saliva concentrations of cortisol, dehydroepiandrosterone and on the dehydroepiandrosterone: cortisol concentration ratio in women over 16 weeks of training. Eur J Appl Physiol Occup Physiol 78:466–471. doi: 10.1007/s004210050447 PubMedCrossRefGoogle Scholar
  19. Filaire E, Lac G (2000) Dehydroepiandrosterone (DHEA) rather than testosterone shows saliva androgen responses to exercise in elite female handball players. Int J Sports Med 21:17–20. doi: 10.1055/s-2000-8851 PubMedCrossRefGoogle Scholar
  20. Harwood K, Vuguin P, DiMartino-Nardi J (2007) Current approaches to the diagnosis and treatment of polycystic ovarian syndrome in youth. Horm Res 68:209–217. doi: 10.1159/000101538 PubMedCrossRefGoogle Scholar
  21. Johnson L, Kraemer R, Haltom R, Kraemer G, Gaines H, Castracane V (1997) Effects of estrogen replacement therapy on dehydroepiandrosterone, dehydroepiandrosterone sulfate, and cortisol responses to exercise in postmenopausal women. Fertil Steril 68:836–843. doi: 10.1016/S0015-0282(97)00369-5 PubMedCrossRefGoogle Scholar
  22. Keizer H, Kuipers H, de Haan J, Beckers E, Habets L (1987a) Multiple hormonal responses to physical exercise in eumenorrheic trained and untrained women. Int J Sports Med 8(Suppl):139–150. doi: 10.1055/s-2008-1025720 PubMedCrossRefGoogle Scholar
  23. Keizer H, Kuipers H, de Haan J, Janssen G, Beckers E, Habets L, van Kranenburg G, Geurten P (1987b) Effect of a 3-month endurance training program on metabolic and multiple hormonal responses to exercise. Int J Sports Med 8(Suppl 3):154–160. doi: 10.1055/s-2008-1025722 PubMedCrossRefGoogle Scholar
  24. Kuoppasalmi K (1980) Plasma testosterone and sex-hormone-binding globulin capacity in physical exercise. Scand J Clin Lab Invest Suppl 40:411–418. doi: 10.3109/00365518009101863 CrossRefGoogle Scholar
  25. Kuoppasalmi K, Näveri H, Härkönen M, Adlercreutz H (1980) Plasma cortisol, androstenedione, testosterone and luteinizing hormone in running exercise of different intensities. Scand J Clin Lab Invest Suppl 40:403–409. doi: 10.3109/00365518009101862 CrossRefGoogle Scholar
  26. Labrie F, Bélanger A, Luu-The V, Labrie C, Simard J, Cusan L, Gomez J, Candas B (1998) DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids 63(5–6):322–328. doi: 10.1016/S0039-128X(98)00007-5 PubMedCrossRefGoogle Scholar
  27. Leppänen E, Dugué B (1998) When to collect blood specimens: midmorning vs fasting samples. Clin Chem 44:2537–2542PubMedGoogle Scholar
  28. Loucks A, Mortola J, Girton L, Yen S (1989) Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J Clin Endocrinol Metab 68(2):402–411PubMedCrossRefGoogle Scholar
  29. Massafra C, De Felice C, Agnusdei D, Gioia D, Bagnoli F (1999) Androgens and osteocalcin during the menstrual cycle. J Clin Endocrinol Metab 84:971–974. doi: 10.1210/jc.84.3.971 PubMedCrossRefGoogle Scholar
  30. Miller K, Biller B, Beauregard C, Lipman J, Jones J, Schoenfeld D, Sherman J, Swearingen B, Loeffler J, Klibanski A (2006) Effects of testosterone replacement in androgen-deficient women with hypopituitarism: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 91:1683–1690. doi: 10.1210/jc.2005-2596 PubMedCrossRefGoogle Scholar
  31. Murphy A, Cropp C, Smith B, Burkman R, Zacur H (1990) Effect of low-dose oral contraceptive on gonadotropins, androgens, and sex hormone binding globulin in nonhirsute women. Fertil Steril 53:35–39PubMedGoogle Scholar
  32. Petrides J, Mueller G, Kalogeras K, Chrousos G, Gold P, Deuster P (1994) Exercise-induced activation of the hypothalamic-pituitary-adrenal axis: marked differences in the sensitivity to glucocorticoid suppression. J Clin Endocrinol Metab 79:377–383. doi: 10.1210/jc.79.2.377 PubMedCrossRefGoogle Scholar
  33. Ponjee G, De Rooy H, Vader H (1994) Androgen turnover during marathon running. Med Sci Sports Exerc 26:1274–1277. doi: 10.1249/00005768-199410000-00015 PubMedGoogle Scholar
  34. Rowell L (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159PubMedGoogle Scholar
  35. Schijf C, van der Mooren M, Doesburg W, Thomas C, Rolland R (1993) Differences in serum lipids, lipoproteins, sex hormone binding globulin and testosterone between the follicular and the luteal phase of the menstrual cycle. Acta Endocrinol (Copenh) 129:130–133Google Scholar
  36. Sheffield-Moore M, Paddon-Jones D, Casperson S, Gilkison C, Volpi E, Wolf S, Jiang J, Rosenblatt J, Urban R (2006) Androgen therapy induces muscle protein anabolism in older women. J Clin Endocrinol Metab 91(10):3844–3849. doi: 10.1210/jc.2006-0588 PubMedCrossRefGoogle Scholar
  37. Simpson E, Davis S (2001) Minireview: aromatase and the regulation of estrogen biosynthesis—some new perspectives. Endocrinology 142:4589–4594. doi: 10.1210/en.142.11.4589 PubMedCrossRefGoogle Scholar
  38. Tremblay M, Chu S, Mureika R (1995) Methodological and statistical considerations for exercise-related hormone evaluations. Sports Med 20(2):90–108. doi: 10.2165/00007256-199520020-00004 PubMedCrossRefGoogle Scholar
  39. Tremblay M, Copeland J, Van Helder W (2004) Effect of training status and exercise mode on endogenous steroid hormones in men. J Appl Physiol 96(2):531–539. doi: 10.1152/japplphysiol.00656.2003 PubMedCrossRefGoogle Scholar
  40. Tremblay M, Copeland J, Van Helder W (2005) Influence of exercise duration on post-exercise steroid hormone responses in trained males. Eur J Appl Physiol 94(5–6):505–513. doi: 10.1007/s00421-005-1380-x PubMedCrossRefGoogle Scholar
  41. Vandewalle H, Pérès G, Heller J, Monod H (1985) All out anaerobic capacity tests on cycle ergometers. A comparative study on men and women. Eur J Appl Physiol Occup Physiol 54(2):222–229. doi: 10.1007/BF02335934 PubMedCrossRefGoogle Scholar
  42. Viru A, Karelson K, Smirnova T (1992) Stability and variability in hormonal responses to prolonged exercise. Int J Sports Med 13:230–235. doi: 10.1055/s-2007-1021259 PubMedCrossRefGoogle Scholar
  43. Wiegratz I, Jung-Hoffmann C, Kuhl H (1995) Effect of two oral contraceptives containing ethinylestradiol and gestodene or norgestimate upon androgen parameters and serum binding proteins. Contraception 51:341–346. doi: 10.1016/0010-7824(95)00098-U PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • C. Enea
    • 1
  • N. Boisseau
    • 1
  • M. Ottavy
    • 1
    • 2
  • J. Mulliez
    • 1
    • 2
  • C. Millet
    • 3
  • I. Ingrand
    • 4
  • V. Diaz
    • 1
    • 2
  • B. Dugué
    • 1
  1. 1.Laboratoire des Adaptations Physiologiques aux Activités Physiques (EA3813), Faculté des Sciences du SportUniversité de PoitiersPoitiersFrance
  2. 2.Service d’Exploration Fonctionnelle Respiratoire et Physiologie de l’Exercice, Pavillon BeauchantCentre Hospitalier Universitaire (CHU) de PoitiersPoitiers CedexFrance
  3. 3.Service de Médecine Nucléaire, Centre Hospitalier Universitaire (CHU) de PoitiersPoitiers CedexFrance
  4. 4.Centre d’Investigation Clinique, INSERM CIC-P 802Centre Hospitalier Universitaire (CHU), Université de PoitiersPoitiers CedexFrance

Personalised recommendations