European Journal of Applied Physiology

, Volume 106, Issue 2, pp 285–296 | Cite as

Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women

  • Elina Sillanpää
  • David E. Laaksonen
  • Arja Häkkinen
  • Laura Karavirta
  • Benjamin Jensen
  • William J. Kraemer
  • Kai Nyman
  • Keijo Häkkinen
Original Article


In this study adaptations in body composition, physical fitness and metabolic health were examined during 21 weeks of endurance and/or strength training in 39- to 64-year-old healthy women. Subjects (n = 62) were randomized into endurance training (E), strength training (S), combined strength and endurance training (SE), or control groups (C). S and E trained 2 and SE 2 + 2 times in a week. Muscle strength and maximal oxygen uptake (VO2max) were measured. Leg extension strength increased 9 ± 8% in S (P < 0.001), 12 ± 8% in SE (P < 0.001) and 3 ± 4% in E (P = 0.036), and isometric bench press 20% only in both S and SE (P < 0.001). VO2max increased 23 ± 18% in E and 16 ± 12% in SE (both P < 0.001). The changes in the total body fat (dual X-ray absorptiometry) did not differ between groups, but significant decreases were observed in E (−5.9%, P = 0.022) and SE (−4.8%, P = 0.005). Lean mass of the legs increased 2.2–2.9% (P = 0.004–0.010) in S, SE and E. There were no differences between the groups in the changes in blood lipids, blood pressure or serum glucose and insulin. Total cholesterol and low-density lipoprotein cholesterol decreased and high-density lipoprotein cholesterol increased in E. Both S and SE showed small decreases in serum fasting insulin. Both endurance and strength training and their combination led to expected training-specific improvements in physical fitness, without interference in fitness or muscle mass development. All training methods led to increases in lean body mass, but decreases in body fat and modest improvements in metabolic risk factors were more evident with aerobic training than strength training.


Dual X-ray absorptiometry Blood lipids Oral glucose tolerance test Muscle strength Maximal oxygen consumption 



This study was partly supported by a grant from the Ministry of Education, Finland and the Central Finland Health Care District, Jyväskylä Finland.


  1. American College of Sports Medicine (2002) Position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc 34:364–380. doi: 10.1097/00005768-200202000-00027 CrossRefGoogle Scholar
  2. Asikainen TM, Kukkonen-Harjula K, Miilunpalo S (2004) Exercise for health for early postmenopausal women: a systematic review of randomised controlled trials. Sports Med 34:753–778. doi: 10.2165/00007256-200434110-00004 PubMedCrossRefGoogle Scholar
  3. Aunola S, Rusko H (1986) Aerobic and anaerobic thresholds determined from venous lactate or from ventilation and gas exchange in relation to muscle fiber composition. Int J Sports Med 7:161–166. doi: 10.1055/s-2008-1025755 PubMedCrossRefGoogle Scholar
  4. Boardley D, Fahlman M, Topp R, Morgan AL, McNevin N (2007) The impact of exercise training on blood lipids in older adults. Am J Geriatr Cardiol 16:30–35. doi: 10.1111/j.1076-7460.2007.05353.x PubMedCrossRefGoogle Scholar
  5. Braith RW, Stewart KJ (2006) Resistance exercise training: its role in the prevention of cardiovascular disease. Circulation 113:2642–2650. doi: 10.1161/CIRCULATIONAHA.105.584060 PubMedCrossRefGoogle Scholar
  6. Chilibeck PD, Calder AW, Sale DG, Webber CE (1998) A comparison of strength and muscle mass increases during resistance training in young women. Eur J Appl Physiol 77:170–175. doi: 10.1007/s004210050316 CrossRefGoogle Scholar
  7. Elliott KJ, Sale C, Cable NT (2002) Effects of resistance training and detraining on muscle strength and blood lipid profiles in postmenopausal women. Br J Sports Med 36:340–344. doi: 10.1136/bjsm.36.5.340 PubMedCrossRefGoogle Scholar
  8. Fahlman MM, Boardley D, Lambert CP, Flynn MG (2002) Effects of endurance training and resistance training on plasma lipoprotein profiles in elderly women. J Gerontol A Biol Sci Med Sci 57:B54–B60PubMedGoogle Scholar
  9. Ferketich AK, Kirby TE, Alway SE (1998) Cardiovascular and muscular adaptations to combined endurance and strength training in elderly women. Acta Physiol Scand 164:259–267. doi: 10.1046/j.1365-201X.1998.00428.x miscellaneous articlePubMedCrossRefGoogle Scholar
  10. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  11. Hagberg JM, Graves JE, Limacher M et al (1989) Cardiovascular responses of 70- to 79-year-old men and women to exercise training. J Appl Physiol 66:2589–2594. doi: 10.1063/1.344224 PubMedCrossRefGoogle Scholar
  12. Häkkinen K, Kallinen M, Izquierdo M et al (1998a) Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 84:1341–1349. doi: 10.1007/BFb0103417 PubMedGoogle Scholar
  13. Häkkinen K, Pakarinen A, Newton RU, Kraemer WJ (1998b) Acute hormone responses to heavy resistance lower and upper extremity exercise in young versus old men. Eur J Appl Physiol 77:312–319. doi: 10.1007/s004210050339 CrossRefGoogle Scholar
  14. Häkkinen K, Pakarinen A, Kraemer WJ, Newton RU, Alen M (2000) Basal concentrations and acute responses of serum hormones and strength development during heavy resistance training in middle-aged and elderly men and women. J Gerontol A Biol Sci Med Sci 55:B95–B105PubMedGoogle Scholar
  15. Häkkinen K, Pakarinen A, Kraemer WJ, Häkkinen A, Valkeinen H, Alen M (2001) Selective muscle hypertrophy, changes in EMG and force, and serum hormones during strength training in older women. J Appl Physiol 91:569–580. doi: 10.1007/3-540-44991-4 PubMedGoogle Scholar
  16. Häkkinen K, Alen M, Kraemer WJ et al (2003) Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol 89:42–52. doi: 10.1007/s00421-002-0751-9 PubMedCrossRefGoogle Scholar
  17. Häkkinen A, Holopainen E, Kautiainen H, Sillanpää E, Häkkinen K (2006) Neuromuscular function and balance of prepubertal and pubertal blind and sighted boys. Acta Paediatr 95:1277–1283. doi: 10.1080/08035250600573144 PubMedCrossRefGoogle Scholar
  18. Hawley JA, Lessard SJ (2008) Exercise training-induced improvements in insulin action. Acta Physiol (Oxf) 192:127–135. doi: 10.1007/978-3-540-74921-9 Google Scholar
  19. Hickson RC (1980) Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol 45:255–263. doi: 10.1007/BF00421333 CrossRefGoogle Scholar
  20. Holten MK, Zacho M, Gaster M, Juel C, Wojtaszewski JF, Dela F (2004) Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes 53:294–305. doi: 10.2337/diabetes.53.2.294 PubMedCrossRefGoogle Scholar
  21. Houtkooper LB, Going SB, Sproul J, Blew RM, Lohman TG (2000) Comparison of methods for assessing body-composition changes over 1 year in postmenopausal women. Am J Clin Nutr 72:401–406PubMedGoogle Scholar
  22. Izquierdo M, Ibanez J, Häkkinen K, Kraemer WJ, Larrion JL, Gorostiaga EM (2004) Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc 36:435–443. doi: 10.1249/01.MSS.0000117897.55226.9A PubMedCrossRefGoogle Scholar
  23. Izquierdo M, Häkkinen K, Ibanez J, Kraemer WJ, Gorostiaga EM (2005) Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men. Eur J Appl Physiol 94:70–75. doi: 10.1007/s00421-004-1280-5 PubMedCrossRefGoogle Scholar
  24. Jurca R, Lamonte MJ, Barlow CE, Kampert JB, Church TS, Blair SN (2005) Association of muscular strength with incidence of metabolic syndrome in men. Med Sci Sports Exerc 37:1849–1855. doi: 10.1249/01.mss.0000175865.17614.74 PubMedCrossRefGoogle Scholar
  25. Kelley GA, Kelley KS (2000) Progressive resistance exercise and resting blood pressure: a meta-analysis of randomized controlled trials. Hypertension 35:838–843. doi: 10.1385/159259008X PubMedGoogle Scholar
  26. Kelley GA, Kelley KA, Tran ZV (2001) Aerobic exercise and resting blood pressure: a meta-analytic review of randomized, controlled trials. Prev Cardiol 4:73–80. doi: 10.1111/j.1520-037X.2001.00529.x PubMedCrossRefGoogle Scholar
  27. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D (2002) Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 76:378–383PubMedGoogle Scholar
  28. Kim J, Heshka S, Gallagher D et al (2004) Intermuscular adipose tissue-free skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in adults. J Appl Physiol 97:655–660. doi: 10.1152/japplphysiol.00260.2004 PubMedCrossRefGoogle Scholar
  29. Kotani K, Tokunaga K, Fujioka S et al (1994) Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int J Obes Relat Metab Disord 18:207–212PubMedGoogle Scholar
  30. Kraemer WJ, Patton JF, Gordon SE et al (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 78:976–989PubMedGoogle Scholar
  31. Kraemer WJ, Nindl BC, Ratamess NA et al (2004) Changes in muscle hypertrophy in women with periodized resistance training. Med Sci Sports Exerc 36:697–708. doi: 10.1249/01.MSS.0000122734.25411.CF PubMedCrossRefGoogle Scholar
  32. Laaksonen DE, Lakka H, Salonen JT, Niskanen LK, Rauramaa R, Lakka TA (2002) Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome. Diabetes Care 25:1612–1618. doi: 10.2337/diacare.25.9.1612 PubMedCrossRefGoogle Scholar
  33. Laaksonen DE, Niskanen L, Lakka HM, Lakka TA, Uusitupa M (2004) Epidemiology and treatment of the metabolic syndrome. Ann Med 36:332–346. doi: 10.1080/07853890410031849 PubMedCrossRefGoogle Scholar
  34. Lakka TA, Laaksonen DE (2007) Physical activity in prevention and treatment of the metabolic syndrome. Appl Physiol Nutr Metab 32:76–88. doi: 10.1139/H06-113 PubMedCrossRefGoogle Scholar
  35. Leon AS, Sanchez OA (2001) Response of blood lipids to exercise training alone or combined with dietary intervention. Med Sci Sports Exerc 33:S502–S515. doi: 10.1097/00005768-200106001-00021 discussion S528–S529PubMedCrossRefGoogle Scholar
  36. McCarthy JP, Pozniak M, Agre JC (2002) Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc 34:511–519. doi: 10.1097/00005768-200203000-00019 PubMedCrossRefGoogle Scholar
  37. Nindl BC, Harman EA, Marx JO et al (2000) Regional body composition changes in women after 6 months of periodized physical training. J Appl Physiol 88:2251–2259PubMedGoogle Scholar
  38. Pascot A, Lemieux S, Lemieux I et al (1999) Age-related increase in visceral adipose tissue and body fat and the metabolic risk profile of premenopausal women. Diabetes Care 22:1471–1478. doi: 10.2337/diacare.22.9.1471 PubMedCrossRefGoogle Scholar
  39. Pritchard JE, Nowson CA, Strauss BJ, Carlson JS, Kaymakci B, Wark JD (1993) Evaluation of dual energy X-ray absorptiometry as a method of measurement of body fat. Eur J Clin Nutr 47:216–228PubMedGoogle Scholar
  40. Rockl KS, Witczak CA, Goodyear LJ (2008) Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 60:145–153. doi: 10.1002/iub.21 PubMedCrossRefGoogle Scholar
  41. Sallinen J, Pakarinen A, Fogelholm M et al (2006) Serum basal hormone concentrations and muscle mass in aging women: effects of strength training and diet. Int J Sport Nutr Exerc Metab 16:316–331PubMedGoogle Scholar
  42. Seip RL, Moulin P, Cocke T et al (1993) Exercise training decreases plasma cholesteryl ester transfer protein. Arterioscler Thromb 13:1359–1367PubMedGoogle Scholar
  43. Shen W, Punyanitya M, Chen J et al (2006) Waist circumference correlates with metabolic syndrome indicators better than percentage fat. Obesity (Silver Spring) 14:727–736. doi: 10.1038/oby.2006.83 CrossRefGoogle Scholar
  44. Sillanpää E, Häkkinen A, Nyman K et al (2008) Body composition and fitness during strength and/or endurance training in older men. Med Sci Sports Exerc 40:950–958PubMedCrossRefGoogle Scholar
  45. Sipilä S, Suominen H (1995) Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol 78:334–340PubMedGoogle Scholar
  46. Stefanick ML, Mackey S, Sheehan M, Ellsworth N, Haskell WL, Wood PD (1998) Effects of diet and exercise in men and postmenopausal women with low levels of HDL cholesterol and high levels of LDL cholesterol. N Engl J Med 339:12–20. doi: 10.1056/NEJM199807023390103 PubMedCrossRefGoogle Scholar
  47. Tracy BL, Ivey FM, Hurlbut D et al (1999) Muscle quality. II. Effects of strength training in 65- to 75-year-old men and women. J Appl Physiol 86:195–201PubMedGoogle Scholar
  48. Tsuzuku S, Kajioka T, Endo H, Abbott RD, Curb JD, Yano K (2007) Favorable effects of non-instrumental resistance training on fat distribution and metabolic profiles in healthy elderly people. Eur J Appl Physiol 99:549–555. doi: 10.1007/s00421-006-0377-4 PubMedCrossRefGoogle Scholar
  49. Vasankari TJ, Kujala UM, Vasankari TM, Ahotupa M (1998) Reduced oxidized LDL levels after a 10-month exercise program. Med Sci Sports Exerc 30:1496–1501. doi: 10.1097/00005768-199810000-00005 PubMedCrossRefGoogle Scholar
  50. Vincent KR, Braith RW, Bottiglieri T, Vincent HK, Lowenthal DT (2003) Homocysteine and lipoprotein levels following resistance training in older adults. Prev Cardiol 6:197–203. doi: 10.1111/j.1520-037X.2003.01723.x PubMedCrossRefGoogle Scholar
  51. Wannamethee SG, Shaper AG, Lennon L, Whincup PH (2007) Decreased muscle mass and increased central adiposity are independently related to mortality in older men. Am J Clin Nutr 86:1339–1346PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Elina Sillanpää
    • 1
  • David E. Laaksonen
    • 2
    • 3
  • Arja Häkkinen
    • 4
    • 5
  • Laura Karavirta
    • 1
  • Benjamin Jensen
    • 1
  • William J. Kraemer
    • 6
  • Kai Nyman
    • 5
  • Keijo Häkkinen
    • 1
  1. 1.Department of Biology of Physical ActivityUniversity of JyväskyläJyväskyläFinland
  2. 2.Department of Medicine, Kuopio University Hospital University of KuopioKuopioFinland
  3. 3.Department of PhysiologyUniversity of KuopioKuopioFinland
  4. 4.Department of Health SciencesUniversity of JyväskyläJyväskyläFinland
  5. 5.Central Hospital of JyväskyläJyväskyläFinland
  6. 6.Human Performance Laboratory, Department of KinesiologyUniversity of ConnecticutStorrsUSA

Personalised recommendations