European Journal of Applied Physiology

, Volume 106, Issue 1, pp 1–14 | Cite as

Efficiency in cycling: a review

Invited Review

Abstract

We focus on the effect of cadence and work rate on energy expenditure and efficiency in cycling, and present arguments to support the contention that gross efficiency can be considered to be the most relevant expression of efficiency. A linear relationship between work rate and energy expenditure appears to be a rather consistent outcome among the various studies considered in this review, irrespective of subject performance level. This relationship is an example of the Fenn effect, described more than 80 years ago for muscle contraction. About 91% of all variance in energy expenditure can be explained by work rate, with only about 10% being explained by cadence. Gross efficiency is strongly dependent on work rate, mainly because of the diminishing effect of the (zero work-rate) base-line energy expenditure with increasing work rate. The finding that elite athletes have a higher gross efficiency than lower-level performers may largely be explained by this phenomenon. However, no firm conclusions can be drawn about the energetically optimal cadence for cycling because of the multiple factors associated with cadence that affect energy expenditure.

Keywords

Efficiency Cycling Energy expenditure Cadence Work rate 

References

  1. Aaron EA, Seow KC, Johnson BD, Dempsey JA (1992) Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol 72:1818–1825PubMedGoogle Scholar
  2. Anton-Kuchly B, Roger P, Varene P (1984) Determinants of increased energy cost of submaximal exercise in obese subjects. J Appl Physiol 56:18–23PubMedGoogle Scholar
  3. Barclay CJ, Constable JK, Gibbs CL (1993) Energetics of fast- and slow-twitch muscles of the mouse. J Physiol 472:61–80PubMedGoogle Scholar
  4. Bell HJ, Ramsaroop DM, Duffin J (2003) The respiratory effects of two modes of passive exercise. Eur J Appl Physiol 88:544–552. doi: 10.1007/s00421-002-0771-5 PubMedCrossRefGoogle Scholar
  5. Benedict FG, Cathcart EP (1913) Muscular work. Publications no. 187, Carnegie Institute of Washington (as referred to in Dickinson (1929))Google Scholar
  6. Bijker KE, de Groot G, Hollander AP (2001) Delta efficiencies of running and cycling. Med Sci Sports Exerc 33:1546–1551. doi: 10.1097/00005768-200109000-00019 PubMedCrossRefGoogle Scholar
  7. Bijker KE, de Groot G, Hollander AP (2002) Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol 87:556–561. doi: 10.1007/s00421-002-0663-8 PubMedCrossRefGoogle Scholar
  8. Böning D, Gonen Y, Maassen N (1984) Relationship between work load, pedal frequency, and physical fitness. Int J Sports Med 5:92–97. doi: 10.1055/s-2008-1025887 PubMedCrossRefGoogle Scholar
  9. Cannon DT, Kolkhorst FW, Cipriani DJ (2007) Effect of pedaling technique on muscle activity and cycling efficiency. Eur J Appl Physiol 99:659–664. doi: 10.1007/s00421-006-0391-6 PubMedCrossRefGoogle Scholar
  10. Cavagna GA, Legramandi MA, Peyre-Tartaruga LA (2008) Old men running: mechanical work and elastic bounce. Proc Biol Sci 275:411–418. doi: 10.1098/rspb.2007.1288 PubMedCrossRefGoogle Scholar
  11. Cavanagh PR, Kram R (1985) The efficiency of human movement—a statement of the problem. Med Sci Sports Exerc 17:304–308PubMedGoogle Scholar
  12. Chavarren J, Calbet JA (1999) Cycling efficiency and pedalling frequency in road cyclists. Eur J Appl Physiol Occup Physiol 80:555–563. doi: 10.1007/s004210050634 PubMedCrossRefGoogle Scholar
  13. Coast JR, Welch HG (1985) Linear increase in optimal pedal rate with increased power output in cycle ergometry. Eur J Appl Physiol Occup Physiol 53:339–342. doi: 10.1007/BF00422850 PubMedCrossRefGoogle Scholar
  14. Coast JR, Cox RH, Welch HG (1986) Optimal pedalling rate in prolonged bouts of cycle ergometry. Med Sci Sports Exerc 18:225–230. doi: 10.1249/00005768-198604000-00013 PubMedGoogle Scholar
  15. Coyle EF (2005) Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol 98:2191–2196. doi: 10.1152/japplphysiol.00216.2005 PubMedCrossRefGoogle Scholar
  16. Coyle EF, Sidossis LS, Horowitz JF, Beltz JD (1992) Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc 24:782–788PubMedGoogle Scholar
  17. Cullen LK, Andrew K, Lair KR et al (1992) Efficiency of trained cyclists using circular and noncircular chainrings. Int J Sports Med 13:264–269. doi: 10.1055/s-2007-1021264 PubMedCrossRefGoogle Scholar
  18. Delextrat A, Tricot V, Bernard T et al (2003) Drafting during swimming improves efficiency during subsequent cycling. Med Sci Sports Exerc 35:1612–1619. doi: 10.1249/01.MSS.0000084422.49491.2C PubMedCrossRefGoogle Scholar
  19. di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol. 89:143–222 (Cited in: di Prampero PE et al. (1993) Energetics of best performances in middle-distance running. J Appl Physiol 74:2318–2324)Google Scholar
  20. di Prampero PE (2000) Cycling on Earth, in space, on the Moon. Eur J Appl Physiol 82:345–360. doi: 10.1007/s004210000220 PubMedCrossRefGoogle Scholar
  21. Dickinson S (1929) The efficiency of bicycle-pedalling, as affected by speed and load. J Physiol 67:242–255PubMedGoogle Scholar
  22. Ettema GJ (2001) Muscle efficiency: the controversial role of elasticity and mechanical energy conversion in stretch-shortening cycles. Eur J Appl Physiol 85:457–465. doi: 10.1007/s004210100464 PubMedCrossRefGoogle Scholar
  23. Ettema G, Loras H, Leirdal S (2009) The effects of cycling cadence on the phases of joint power, crank power, force and force effectiveness. J Electromyogr Kinesiol 19:e94–e101 (online only). doi: 10.1016/j.jelekin.2007.11.009 Google Scholar
  24. Fenn WO (1924) The relation between the work performed and the energy liberated in muscular contraction. J Physiol 58:373–395PubMedGoogle Scholar
  25. Ferguson RA, Ball D, Sargeant AJ (2002) Effect of muscle temperature on rate of oxygen uptake during exercise in humans at different contraction frequencies. J Exp Biol 205:981–987PubMedGoogle Scholar
  26. Foss O, Hallén J (2004) The most economical cadence increases with increasing workload. Eur J Appl Physiol 92:443–451. doi: 10.1007/s00421-004-1175-5 PubMedCrossRefGoogle Scholar
  27. Foss O, Hallén J (2005) Cadence and performance in elite cyclists. Eur J Appl Physiol 93:453–462. doi: 10.1007/s00421-004-1226-y PubMedCrossRefGoogle Scholar
  28. Francescato MP, Girardis M, di Prampero PE (1995) Oxygen cost of internal work during cycling. Eur J Appl Physiol Occup Physiol 72:51–57. doi: 10.1007/BF00964114 PubMedCrossRefGoogle Scholar
  29. Gaesser GA, Brooks GA (1975) Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol 38:1132–1139PubMedGoogle Scholar
  30. Garry RC, Wishart GM (1931) On the existence of a most efficient speed in bicycle pedalling, and the problem of determining human muscular efficiency. J Physiol 72:425–437PubMedGoogle Scholar
  31. Garry RC, Wishart GM (1934) The efficiency of bicycle pedalling in the trained subject. J Physiol 82:200–206PubMedGoogle Scholar
  32. Green HJ, Roy B, Grant S et al (2000) Increases in submaximal cycling efficiency mediated by altitude acclimatization. J Appl Physiol 89:1189–1197PubMedGoogle Scholar
  33. Hagberg JM, Mullin JP, Giese MD, Spitznagel E (1981) Effect of pedaling rate on submaximal exercise responses of competitive cyclists. J Appl Physiol 51:447–451PubMedGoogle Scholar
  34. Hansen EA, Ohnstad AE (2008) Evidence for freely chosen pedalling rate during submaximal cycling to be a robust innate voluntary motor rhythm. Exp Brain Res 186:365–373. doi: 10.1007/s00221-007-1240-5 PubMedCrossRefGoogle Scholar
  35. Hansen EA, Jorgensen LV, Jensen K et al (2002) Crank inertial load affects freely chosen pedal rate during cycling. J Biomech 35:277–285. doi: 10.1016/S0021-9290(01)00182-8 PubMedCrossRefGoogle Scholar
  36. Hill AV (1934) The efficiency of bicycle pedalling. J Physiol 82:207–210PubMedGoogle Scholar
  37. Hintzy F, Mourot L, Perrey S, Tordi N (2005) Effect of endurance training on different mechanical efficiency indices during submaximal cycling in subjects unaccustomed to cycling. Can J Appl Physiol 30:520–528PubMedGoogle Scholar
  38. Hintzy-Cloutier F, Zameziati K, Belli A (2003) Influence of the base-line determination on work efficiency during submaximal cycling. J Sports Med Phys Fitness 43:51–56PubMedGoogle Scholar
  39. Hopker JG, Coleman DA, Wiles JD (2007) Differences in efficiency between trained and recreational cyclists. Appl Physiol Nutr Metab 32:1036–1042. doi: 10.1139/H07-070 PubMedCrossRefGoogle Scholar
  40. Horowitz JF, Sidossis LS, Coyle EF (1994) High efficiency of type I muscle fibers improves performance. Int J Sports Med 15:152–157. doi: 10.1055/s-2007-1021038 PubMedCrossRefGoogle Scholar
  41. Hull ML, Williams M, Williams K, Kautz S (1992) Physiological response to cycling with both circular and noncircular chainrings. Med Sci Sports Exerc 24:1114–1122. doi: 10.1249/00005768-199210000-00008 PubMedGoogle Scholar
  42. Jeukendrup A, Martin D, Gore CJ (2003) Are world-class cyclists really more efficient? Med Sci Sports Exerc 35:1238–1239. doi: 10.1249/01.MSS.0000074558.64862.3B PubMedCrossRefGoogle Scholar
  43. Kautz SA, Hull ML (1993) A theoretical basis for interpreting the force applied to the pedal in cycling. J Biomech 26:155–165. doi: 10.1016/0021-9290(93)90046-H PubMedCrossRefGoogle Scholar
  44. Kautz SA, Neptune RR (2002) Biomechanical determinants of pedaling energetics: internal and external work are not independent. Exerc Sport Sci Rev 30:159–165. doi: 10.1097/00003677-200210000-00004 PubMedCrossRefGoogle Scholar
  45. Kautz SA, Hull ML, Neptune RR (1994) A comparison of muscular mechanical energy expenditure and internal work in cycling. J Biomech 27:1459–1467. doi: 10.1016/0021-9290(94)90195-3 PubMedCrossRefGoogle Scholar
  46. Kitamura K, Jorgensen CR, Gobel F, Taylor HL, Wang Y (1972) Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol 32:516–522PubMedGoogle Scholar
  47. Kohler G, Boutellier U (2005) The generalized force-velocity relationship explains why the preferred pedaling rate of cyclists exceeds the most efficient one. Eur J Appl Physiol 94:188–195. doi: 10.1007/s00421-004-1283-2 PubMedCrossRefGoogle Scholar
  48. Lorås H, Leirdal S, Ettema G (2009) Force effectiveness during cycling at different pedalling rates. J Appl Biomech 25:85–92PubMedGoogle Scholar
  49. Lucia A, Hoyos J, Perez M et al (2002) Inverse relationship between VO2 max and economy/efficiency in world-class cyclists. Med Sci Sports Exerc 34:2079–2084. doi: 10.1097/00005768-200203000-00021 PubMedCrossRefGoogle Scholar
  50. Lucia A, San Juan AF, Montilla M et al (2004) In professional road cyclists, low pedaling cadences are less efficient. Med Sci Sports Exerc 36:1048–1054. doi: 10.1249/01.MSS.0000128249.10305.8A PubMedCrossRefGoogle Scholar
  51. Luhtanen P, Rahkila P, Rusko H, Viitasalo JT (1987) Mechanical work and efficiency in ergometer bicycling at aerobic and anaerobic thresholds. Acta Physiol Scand 131:331–337. doi: 10.1111/j.1748-1716.1987.tb08247.x PubMedCrossRefGoogle Scholar
  52. Marsh AP, Martin PE, Foley KO (2000) Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Med Sci Sports Exerc 32:1630–1634. doi: 10.1097/00005768-200009000-00017 PubMedCrossRefGoogle Scholar
  53. McDaniel J, Durstine JL, Hand GA, Martin JC (2002) Determinants of metabolic cost during submaximal cycling. J Appl Physiol 93:823–828PubMedGoogle Scholar
  54. McGregor M, Becklake MR (1961) The relationship of oxygen cost of breathing to respiratory mechanical work and respiratory force. J Clin Invest 40:971–980. doi: 10.1172/JCI104336 PubMedCrossRefGoogle Scholar
  55. Minetti AE, Pinkerton J, Zamparo P (2001) From bipedalism to bicyclism: evolution in energetics and biomechanics of historic bicycles. Proc Biol Sci 268:1351–1360. doi: 10.1098/rspb.2001.1662 PubMedCrossRefGoogle Scholar
  56. Mora-Rodriguez R, Aguado-Jimenez R (2006) Performance at high pedaling cadences in well-trained cyclists. Med Sci Sports Exerc 38:953–957. doi: 10.1249/01.mss.0000218139.46166.ec PubMedCrossRefGoogle Scholar
  57. Moseley L, Jeukendrup AE (2001) The reliability of cycling efficiency. Med Sci Sports Exerc 33:621–627. doi: 10.1097/00005768-200104000-00017 PubMedCrossRefGoogle Scholar
  58. Moseley L, Achten J, Martin JC, Jeukendrup AE (2004) No differences in cycling efficiency between world-class and recreational cyclists. Int J Sports Med 25:374–379. doi: 10.1055/s-2004-815848 PubMedCrossRefGoogle Scholar
  59. Mourot L, Hintzy F, Messonier L, Zameziati K, Belli A (2004) Supra-maximal cycling efficiency assessed in humans by using a new protocol. Eur J Appl Physiol 93:325–332. doi: 10.1007/s00421-004-1179-1 PubMedCrossRefGoogle Scholar
  60. Neptune RR, Herzog W (1999) The association between negative muscle work and pedaling rate. J Biomech 32:1021–1026. doi: 10.1016/S0021-9290(99)00100-1 PubMedCrossRefGoogle Scholar
  61. Neptune RR, Hull ML (1999) A theoretical analysis of preferred pedaling rate selection in endurance cycling. J Biomech 32:409–415. doi: 10.1016/S0021-9290(98)00182-1 PubMedCrossRefGoogle Scholar
  62. Nickleberry BL Jr, Brooks GA (1996) No effect of cycling experience on leg cycle ergometer efficiency. Med Sci Sports Exerc 28:1396–1401. doi: 10.1097/00005768-199611000-00008 PubMedGoogle Scholar
  63. Nobrega AC, Williamson JW, Friedman DB, Araujo CG, Mitchell JH (1994) Cardiovascular responses to active and passive cycling movements. Med Sci Sports Exerc 26:709–714. doi: 10.1249/00005768-199406000-00009 PubMedCrossRefGoogle Scholar
  64. Poole DC, Barstow TJ, Gaesser GA, Willis WT, Whipp BJ (1994) VO2 slow component: physiological and functional significance. Med Sci Sports Exerc 26:1354–1358PubMedGoogle Scholar
  65. Redfield R, Hull ML (1986) On the relation between joint moments and pedalling rates at constant power in bicycling. J Biomech 19:317–329. doi: 10.1016/0021-9290(86)90008-4 PubMedCrossRefGoogle Scholar
  66. Sallet P, Mathieu R, Fenech G, Baverel G (2006) Physiological differences of elite and professional road cyclists related to competition level and rider specialization. J Sports Med Phys Fitness 46:361–365PubMedGoogle Scholar
  67. Samozino P, Horvais N, Hintzy F (2006) Interactions between cadence and power output effects on mechanical efficiency during sub maximal cycling exercises. Eur J Appl Physiol 97:133–139. doi: 10.1007/s00421-006-0172-2 PubMedCrossRefGoogle Scholar
  68. Seabury JJ, Adams WC, Ramey MR (1977) Influence of pedalling rate and power output on energy expenditure during bicycle ergometry. Ergonomics 20:491–498. doi: 10.1080/00140137708931658 PubMedCrossRefGoogle Scholar
  69. Sidossis LS, Horowitz JF, Coyle EF (1992) Load and velocity of contraction influence gross and delta mechanical efficiency. Int J Sports Med 13:407–411. doi: 10.1055/s-2007-1021289 PubMedCrossRefGoogle Scholar
  70. Stainbsy WN, Gladden LB, Barclay JK, Wilson BA (1980) Exercise efficiency: validity of baseline subtractions. J Appl Physiol 48:518–522PubMedGoogle Scholar
  71. Thys H, Willems PA, Saels P (1996) Energy cost, mechanical work and muscular efficiency in swing-through gait with elbow crutches. J Biomech 29:1473–1482. doi: 10.1016/0021-9290(96)84543-X PubMedCrossRefGoogle Scholar
  72. van Ingen Schenau GJ (1998) Positive work and its efficiency are at their dead-end: comments on a recent discussion. J Biomech 31:195–197PubMedGoogle Scholar
  73. van Ingen Schenau GJ, Cavanagh PR (1990) Power equations in endurance sports. J Biomech 23:865–881. doi: 10.1016/0021-9290(90)90352-4 PubMedCrossRefGoogle Scholar
  74. Van Sickle J Jr, Hull ML (2007) Is economy of competitive cyclists affected by the anterior–posterior foot position on the pedal? J Biomech 40:1262–1267. doi: 10.1016/j.jbiomech.2006.05.026 PubMedCrossRefGoogle Scholar
  75. Whipp BJ, Rossiter HB (2005) The kinetics of oxygen uptake: physiological inferences from the parameters. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in health, disease. Routledge Publs, London, pp 64–94Google Scholar
  76. Whipp BJ, Wasserman K (1969) Efficiency of muscular work. J Appl Physiol 26:644–648PubMedGoogle Scholar
  77. Widrick JJ, Freedson PS, Hamill J (1992) Effect of internal work on the calculation of optimal pedaling rates. Med Sci Sports Exerc 24:376–382. doi: 10.1249/00005768-199203000-00014 PubMedGoogle Scholar
  78. Willems PA, Cavagna GA, Heglund NC (1995) External, internal and total work in human locomotion. J Exp Biol 198:379–393PubMedGoogle Scholar
  79. Winter DA (1979) A new definition of mechanical work done in human movement. J Appl Physiol 46:79–83PubMedGoogle Scholar
  80. Zameziati K, Mornieux G, Rouffet D, Belli A (2006) Relationship between the increase of effectiveness indexes and the increase of muscular efficiency with cycling power. Eur J Appl Physiol 96:274–281. doi: 10.1007/s00421-005-0077-5 PubMedCrossRefGoogle Scholar
  81. Zamparo P, Minetti AE, di Prampero PE (2002) Mechanical efficiency of cycling with a new developed pedal-crank. J Biomech 35:1387–1398. doi: 10.1016/S0021-9290(02)00071-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Human Movement Science Programme, Faculty of Social Sciences and Technology ManagementNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations