European Journal of Applied Physiology

, Volume 106, Issue 1, pp 149–157 | Cite as

Aerobic power and peak power of elite America’s Cup sailors

  • Vernon NevilleEmail author
  • Matthew T. G. Pain
  • Jonathan P. Folland
Original Article


Big-boat yacht racing is one of the only able bodied sporting activities where standing arm-cranking (‘grinding’) is the primary physical activity. However, the physiological capabilities of elite sailors for standing arm-cranking have been largely unreported. The purpose of the study was to assess aerobic parameters, VO2peak and onset of blood lactate (OBLA), and anaerobic performance, torque–crank velocity and power–crank velocity relationships and therefore peak power (P max) and optimum crank-velocity (ωopt), of America’s Cup sailors during standing arm-cranking. Thirty-three elite professional sailors performed a step test to exhaustion, and a subset of ten grinders performed maximal 7 s isokinetic sprints at different crank velocities, using a standing arm-crank ergometer. VO2peak was 4.7 ± 0.5 L/min (range 3.6–5.5 L/min) at a power output of 332 ± 44 W (range 235–425 W). OBLA occurred at a power output of 202 ± 31 W (61% of Wmax) and VO2 of 3.3 ± 0.4 L/min (71% of VO2peak). The torque–crank velocity relationship was linear for all participants (r = 0.9 ± 0.1). P max was 1,420 ± 37 W (range 1,192–1,617 W), and ωopt was 125 ± 6 rpm. These data are among the highest upper-body anaerobic and aerobic power values reported. The unique nature of these athletes, with their high fat-free mass and specific selection and training for standing arm cranking, likely accounts for the high values. The influence of crank velocity on peak power implies that power production during on-board ‘grinding’ may be optimised through the use of appropriate gear-ratios and the development of efficient gear change mechanisms.


VO2max Oxygen uptake Sailing Grinding Arm cranking Hand cycling Torque–velocity Power–velocity OBLA 



We are grateful to Dr. Cristina Pérez Encinas and Dr. Luis del Moral Garcia for their assistance with the data collection, and to Dr. Massimo Massarini for his contributions to the study protocol.

Conflict of interest statement



  1. Bernardi M, Quattrini FM, Rodio A et al (2007) Physiological characteristics of America’s Cup sailors. J Sports Sci 25:1141–1152. doi: 10.1080/02640410701287172 PubMedCrossRefGoogle Scholar
  2. Bouhlel E, Chelly MS, Tabka Z et al (2007) Relationships between maximal anaerobic power of the arms and legs and javelin performance. J Sports Med Phys Fitness 47:141–146PubMedGoogle Scholar
  3. Calbet JA, Holmberg HC, Rosdahl H et al (2005) Why do arms extract less oxygen than legs during exercise? Am J Physiol 289:R1448–R1458. doi: 10.1152/ajpcell.00313.2005 CrossRefGoogle Scholar
  4. Carson WG Jr (1989) Rehabilitation of the throwing shoulder. Clin Sports Med 8:657–689PubMedGoogle Scholar
  5. Dorel S, Hautier CA, Rambaud O et al (2005) Torque and power–velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med 26:739–746. doi: 10.1055/s-2004-830493 PubMedCrossRefGoogle Scholar
  6. Driss T, Vandewalle H, Monod H (1998) Maximal power and force-velocity relationships during cycling and cranking exercises in volleyball players. Correlation with the vertical jump test. J Sports Med Phys Fitness 38:286–293PubMedGoogle Scholar
  7. Gaitanos GC, Williams C, Boobis LH et al (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75:712–719PubMedGoogle Scholar
  8. Gardner AS, Martin JC, Martin DT et al (2007) Maximal torque- and power–pedaling rate relationships for elite sprint cyclists in laboratory and field tests. Eur J Appl Physiol 101:287–292. doi: 10.1007/s00421-007-0498-4 PubMedCrossRefGoogle Scholar
  9. Goosey-Tolfrey V, Castle P, Webborn N et al (2006) Aerobic capacity and peak power output of elite quadriplegic games players. Br J Sports Med 40:684–687. doi: 10.1136/bjsm.2006.026815 PubMedCrossRefGoogle Scholar
  10. Heck H, Mader A, Hess G et al (1985) Justification of the 4-mmol/l lactate threshold. Int J Sports Med 6:117–130. doi: 10.1055/s-2008-1025824 PubMedCrossRefGoogle Scholar
  11. Hicks AL, Martin KA, Ditor DS et al (2003) Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord 41:34–43. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  12. Horswill CA, Miller JE, Scott JR et al (1992) Anaerobic and aerobic power in arms and legs of elite senior wrestlers. Int J Sports Med 13:558–561. doi: 10.1055/s-2007-1024564 PubMedCrossRefGoogle Scholar
  13. Hubner-Wozniak E, Kosmol A, Lutoslawska G et al (2004) Anaerobic performance of arms and legs in male and female free style wrestlers. J Sci Med Sport/Sports Med Australia 7:473–480Google Scholar
  14. Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of men. Br J Nutr 40:497–504. doi: 10.1079/BJN19780152 PubMedCrossRefGoogle Scholar
  15. Jemni M, Sands WA, Friemel F et al (2006) Any effect of gymnastics training on upper-body and lower-body aerobic and power components in national and international male gymnasts? J Strength Cond Res/Natl Strength Cond Assoc 20:899–907Google Scholar
  16. Johnson MA, Polgar J, Weightman D et al (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129. doi: 10.1016/0022-510X(73)90023-3 PubMedCrossRefGoogle Scholar
  17. Leicht AS, Sinclair WH, Spinks WL (2008) Effect of exercise mode on heart rate variability during steady state exercise. Eur J Appl Physiol 102:195–204PubMedCrossRefGoogle Scholar
  18. Marfell-Jones M, Olds T, Stewart A et al (2006) International standards for anthropometric assessment, vol 1. Potchefstroom, South AfricaGoogle Scholar
  19. Martin JC, Wagner BM, Coyle EF (1997) Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sports Exerc 29:1505–1512. doi: 10.1097/00005768-199711000-00018 PubMedGoogle Scholar
  20. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098PubMedGoogle Scholar
  21. Mujika I, Padilla S (2001) Physiological and performance characteristics of male professional road cyclists. Sports medicine (Auckland, NZ) 31:479–487Google Scholar
  22. Neville V (2008) America’s Cup Yacht racing is not just about the boat. Sport Exerc Sci March:26–27Google Scholar
  23. Neville VJ, Molloy J, Brooks JH et al. (2006) Epidemiology of injuries and illnesses in America’s Cup yacht racing. Br J Sports Med 40:304–311 (discussion 311–302). doi: 10.1136/bjsm.2005.021477 Google Scholar
  24. Pearson S, Hume P, Slyfield D et al (2007) External work and peak power are reliable measures of ergometer grinding performance when tested under load, deck heel, and grinding direction conditions. Sports Biomech/Int Soc Biomech Sports 6:71–80CrossRefGoogle Scholar
  25. Sargeant AJ, Hoinville E, Young A (1981) Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 51:1175–1182PubMedGoogle Scholar
  26. Schmid A, Huonker M, Aramendi JF et al (1998) Heart rate deflection compared to 4 mmol x l(-1) lactate threshold during incremental exercise and to lactate during steady-state exercise on an arm-cranking ergometer in paraplegic athletes. Eur J Appl Physiol Occup Physiol 78:177–182. doi: 10.1007/s004210050404 PubMedCrossRefGoogle Scholar
  27. Secher NH, Ruberg-Larsen N, Binkhorst RA et al (1974) Maximal oxygen uptake during arm cranking and combined arm plus leg exercise. J Appl Physiol 36:515–518PubMedGoogle Scholar
  28. Siri WE (1961) Body composition from fluid space and density. In: Brozek J, Hanschel A (eds) Techniques for measuring body composition. National Academy of Science, Washington, DC, pp 223–244Google Scholar
  29. Sjodin B, Jacobs I (1981) Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 2:23–26. doi: 10.1055/s-2008-1034579 PubMedCrossRefGoogle Scholar
  30. Smith PM, Price MJ, Doherty M (2001) The influence of crank rate on peak oxygen consumption during arm crank ergometry. J Sports Sci 19:955–960. doi: 10.1080/026404101317108453 PubMedCrossRefGoogle Scholar
  31. Smith PM, Doherty M, Drake D et al (2004) The influence of step and ramp type protocols on the attainment of peak physiological responses during arm crank ergometry. Int J Sports Med 25:616–621. doi: 10.1055/s-2004-817880 PubMedCrossRefGoogle Scholar
  32. Sprague RCt, Martin JC, Davidson CJ et al (2007) Force-velocity and power–velocity relationships during maximal short-term rowing ergometry. Med Sci Sports Exerc 39:358–364. doi: 10.1249/01.mss.0000241653.37876.73 PubMedCrossRefGoogle Scholar
  33. Stenberg J, Astrand PO, Ekblom B et al (1967) Hemodynamic response to work with different muscle groups, sitting and supine. J Appl Physiol 22:61–70PubMedGoogle Scholar
  34. Tesch PA (1983) Physiological characteristics of elite kayak paddlers. Can J Appl Sport Sci 8:87–91PubMedGoogle Scholar
  35. Turner DL, Hoppeler H, Claassen H et al (1997) Effects of endurance training on oxidative capacity and structural composition of human arm and leg muscles. Acta Physiol Scand 161:459–464. doi: 10.1046/j.1365-201X.1997.00246.x PubMedCrossRefGoogle Scholar
  36. Valent LJ, Dallmeijer AJ, Houdijk H et al (2008) Influence of hand cycling on physical capacity in the rehabilitation of persons with a spinal cord injury: a longitudinal cohort study. Arch Phys Med Rehabil 89:1016–1022. doi: 10.1016/j.apmr.2007.10.034 PubMedCrossRefGoogle Scholar
  37. van Someren KA, Oliver JE (2002) The efficacy of ergometry determined heart rates for flatwater kayak training. Int J Sports Med 23:28–32. doi: 10.1055/s-2002-19268 PubMedCrossRefGoogle Scholar
  38. Vanderthommen M, Francaux M, Johnson D et al (1997) Measurement of the power output during the acceleration phase of all-out arm cranking exercise. Int J Sports Med 18:600–606. doi: 10.1055/s-2007-972688 PubMedCrossRefGoogle Scholar
  39. Vandewalle H, Peres G, Sourabie B et al (1989) Force-velocity relationship and maximal anaerobic power during cranking exercise in young swimmers. Int J Sports Med 10:439–445. doi: 10.1055/s-2007-1024940 PubMedCrossRefGoogle Scholar
  40. Vokac Z, Bell H, Bautz-Holter E et al (1975) Oxygen uptake/heart rate relationship in leg and arm exercise, sitting and standing. J Appl Physiol 39:54–59PubMedGoogle Scholar
  41. Washburn RA, Seals DR (1983) Comparison of peak oxygen uptake in arm cranking. Eur J Appl Physiol Occup Physiol 51:3–6. doi: 10.1007/BF00952531 PubMedCrossRefGoogle Scholar
  42. Westhoff TH, Schmidt S, Gross V et al (2008) The cardiovascular effects of upper-limb aerobic exercise in hypertensive patients. J Hypertens 26:1336–1342. doi: 10.1097/HJH.0b013e3282ffac13 PubMedCrossRefGoogle Scholar
  43. Whiting P (2007) The 32nd America’s Cup: a simple guide. Wiley, ChichesterGoogle Scholar
  44. Wilkie DR (1949) The relation between force and velocity in human muscle. J Physiol 110:249–280PubMedGoogle Scholar
  45. Zagatto AM, Papoti M, Gobatto CA (2008) Anaerobic capacity may not be determined by critical power model in elite table tennis players. J Sports Sci Med 7:54–59Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vernon Neville
    • 1
    Email author
  • Matthew T. G. Pain
    • 1
  • Jonathan P. Folland
    • 1
  1. 1.School of Sport and Exercise SciencesLoughborough UniversityLoughboroughUK

Personalised recommendations