European Journal of Applied Physiology

, Volume 105, Issue 6, pp 851–859 | Cite as

Pattern of deoxy[Hb + Mb] during ramp cycle exercise: influence of aerobic fitness status

  • Jan Boone
  • Katrien Koppo
  • Thomas J. Barstow
  • Jacques Bouckaert
Original Article

Abstract

During ramp exercise the deoxy[Hb + Mb] pattern follows a sigmoid model [f(x) = f0 + A/(1 + exp−(−c + dx))], indicating a non-linear muscle blood flow \( (\dot{Q}{\text{m}})/{\text{oxygen}}\;{\text{uptake}}\;(\dot{V}{\text{O}}_{{2{\text{m}}}} ) \)-relationship. We hypothesised that in trained cyclists the sigmoid would display a rightward shift, due to an increased oxidative capacity and/or higher percentage of slow-twitch fibres. A total of 10 cyclists and 11 physically active students (PA students) performed a relative ramp exercise (±12 min) and a ramp25-exercise (25 W min−1). Deoxy[Hb + Mb] was measured at the M. Vastus Lateralis by NIRS, normalized to the total amplitude of the response and expressed as a function of absolute and relative (%peakP) work rate. The work rate corresponding to c/d (i.e.50% of the amplitude of the deoxy[Hb + Mb] response) was the only parameter of the sigmoid that differed significantly between cyclists (57.9 ± 4.4% and 60.1 ± 4.1%peakP in the relative and ramp25, respectively) and PAstudents (49.6 ± 4.2% and 48.2 ± 5.1%peakP, respectively), indicating a rightward shift of the sigmoid in the cyclists. These results suggest a change in the time course of C(av)O2 as a function of aerobic fitness status.

Keywords

NIRS Deoxygenation Muscle blood flow Muscle oxygen uptake Sigmoid model 

References

  1. Armstrong RB, Laughlin MH (1984) Exercise blood flow pattern within and among rat muscles after training. Am J Physiol 246:H59–H68PubMedGoogle Scholar
  2. Bauer TA, Reusch JE, Levi M, Regensteiner JG (2007) Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care 30:2880–2885. doi:10.2337/dc07-0843 PubMedCrossRefGoogle Scholar
  3. Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027PubMedGoogle Scholar
  4. Behnke BJ, McDonough P, Padilla DJ, Musch TI, Poole DC (2003) Oxygen exchange profile in rat muscle of contrasting fibre types. J Physiol 549:597–605. doi:10.1113/jphysiol.2002.035915 PubMedCrossRefGoogle Scholar
  5. Belardinelli R, Georgiou D, Barstow TJ (1995) Near-infrared spectroscopy and changes in skeletal muscle oxygenation during incremental exercise in chronic heart failure: a comparison with healthy subjects. G Ital Cardiol 25:715–724PubMedGoogle Scholar
  6. Boone J, Koppo K, Bouckaert J (2008) The \( \dot{V}{\text{O}_{2}} \) response to submaximal ramp cycle exercise: influence of ramp slope and training status. Respir Physiol Neurobiol 161:291–297. doi:10.1016/j.resp.2008.03.008
  7. Costill DL, Fink WJ, Pollock ML (1976) Muscle fibre composition and enzyme activities of elite distance runners. Med Sci Sports Exerc 8:96–100Google Scholar
  8. Delorey DS, Kowalchuk JM, Paterson DH (2003) Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 95:113–120PubMedGoogle Scholar
  9. Delp MD, Armstrong RB (1988) Blood flow in normal and denervated muscle during exercise in conscious rats. Am J Physiol 255:H1509–H1515PubMedGoogle Scholar
  10. Edgerton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of humans leg muscles. Histochem J 7:259–266. doi:10.1007/BF01003594 PubMedCrossRefGoogle Scholar
  11. Elder GCB (1977) The heterogeneity of fibre type populations in human muscle. Med Sci Sports Exerc 9:64–65. doi:10.1249/00005768-197721000-00090 Google Scholar
  12. Faulkner JA, Heigenhauser GJ, Schork MA (1977) The cardiac output-oxygen uptake relationship of men during graded bicycle ergometry. Med Sci Sports Exerc 9:148–154Google Scholar
  13. Ferreira LF, Townsend DK, Lutjemeier BJ, Barstow TJ (2005) Muscle capillary blood flow kinetics estimated from pulmonary O2 uptake and near-infrared spectroscopy. J Appl Physiol 98:1820–1828. doi:10.1152/japplphysiol.00907.2004 PubMedCrossRefGoogle Scholar
  14. Ferreira LF, McDonough P, Behnke BJ, Musch TI, Poole DC (2006) Blood flow and O2 extraction as a function of O2 uptake in muscle composed of different fibre types. Respir Physiol Neurobiol 153:237–249. doi:10.1016/j.resp.2005.11.004 PubMedCrossRefGoogle Scholar
  15. Ferreira LF, Koga S, Barstow TJ (2007) Dynamics of noninvasively estimated microvascular O2 extraction during ramp exercise. J Appl Physiol 103:1999–2004. doi:10.1152/japplphysiol.01414.2006 PubMedCrossRefGoogle Scholar
  16. Folkow B, Halicka HD (1968) A comparison between ‘red’ and ‘white’muscle with respect to blood supply, capillary surface area and oxygen uptake during rest and movement. Microvasc Res 1:1–14. doi:10.1016/0026-2862(68)90002-2 CrossRefGoogle Scholar
  17. Gollnick PD, Saltin B (1982) Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 2:1–12. doi:10.1111/j.1475-097X.1982.tb00001.x PubMedCrossRefGoogle Scholar
  18. Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, Ceretelli P (2003) Muscle oxygenation and pulmonary gas exchange kinetics during cycle exercise on-transitions in humans. J Appl Physiol 95:149–158PubMedGoogle Scholar
  19. Harper AJ, Ferreira LF, Lutjemeier BJ, Townsend DK, Barstow TJ (2006) Human femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise. Exp Physiol 91:661–671. doi:10.1113/expphysiol.2005.032904 PubMedCrossRefGoogle Scholar
  20. Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of human fibre types in 36 human muscles. An autopsy study. J Neurol Sci 18:111–129. doi:10.1016/0022-510X(73)90023-3 PubMedCrossRefGoogle Scholar
  21. Kautz SA, Neptune RR (2002) Biomechanical determinants of pedalling energetics: internal and external work are not independent. Exerc Sport Sci Rev 30:159–165. doi:10.1097/00003677-200210000-00004 PubMedCrossRefGoogle Scholar
  22. Koga S, Poole DC, Ferreira LF, Whipp BJ, Kondo N, Saitoh T, Ohmae E, Barstow TJ (2008) Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise. J Appl Physiol 103:2049–2056. doi:10.1152/japplphysiol.00627.2007 CrossRefGoogle Scholar
  23. Kime R, Im J, Moser D, Lin Y, Nioka S, Katsumura T, Chance B (2005) Reduced heterogeneity of muscle deoxygenation during heavy bicycle exercise. Med Sci Sports Exerc 37:412–417. doi:10.1249/01.MSS.0000155401.81284.76 PubMedCrossRefGoogle Scholar
  24. Laughlin MH, Armstrong RB (1982) Muscular blood flow distribution pattern as a function of running speed in rats. Am J Physiol 243:H296–H306PubMedGoogle Scholar
  25. Laughlin MH, Armstrong RB (1987) Adrenoreceptor effects on rat muscle blood flow during treadmill exercise. J Appl Physiol 62:1465–1472PubMedGoogle Scholar
  26. Lexell J, Henriksson-Larsen K, Sjöstrom M (1983) Distribution of different fibre types in human skeletal muscle. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117:115–122PubMedCrossRefGoogle Scholar
  27. Li YSW, Yuen CWM, Yueng KW, Sin KM (1999) Prediction of the best-fit regression model to correlate instrumental colour measurement and visual assessment. Colour Technol 115:22–31. doi:10.1111/j.1478-4408.1999.tb00346.x CrossRefGoogle Scholar
  28. Lutjemeier BJ, Miura A, Scheuermann BW, Koga S, Townsend DK, Barstow TJ (2005) Muscle contraction-blood flow interactions during upright knee extension exercise in humans. J Appl Physiol 98:1575–1583. doi:10.1152/japplphysiol.00219.2004 PubMedCrossRefGoogle Scholar
  29. McDonough P, Behnke BJ, Padilla DJ, Musch TI, Poole DC (2005) Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. J Physiol 563:903–913. doi:10.1113/jphysiol.2004.079533 PubMedCrossRefGoogle Scholar
  30. McGuire DK, Levine BD, Williamson JW, Snell PG, Blomqvist CG, Saltin B, Mitchell JH (2001) A 30-year follow-up of the Dallas bedrest and training study. II. Effect of age on cardiovascular adaptation to exercise training. Circulation 104:1358–1366. doi:10.1161/hc3701.096099 PubMedCrossRefGoogle Scholar
  31. Mizuno M, Tokizawa K, Iwakawa T, Muaoka I (2004) Inflection points of cardiovascular responses and oxygenation are correlated in the distal but not the proximal portions of muscle during incremental exercise. J Appl Physiol 97:867–873. doi:10.1152/japplphysiol.00213.2004 PubMedCrossRefGoogle Scholar
  32. Poole DC, Sexton WL, Behnke BJ, Ferguson CS, Hageman KS, Musch TI (2000) Respiratory muscle blood flows during physiological and chemical hyperpnea in the rat. J Appl Physiol 88:186–194PubMedGoogle Scholar
  33. Proctor DN, Miller JD, Dietz NM, Minson CT, Joyner MJ (2001) Reduced submaximal leg blood flow after high-intensity aerobic training. J Appl Physiol 91:2619–2627PubMedGoogle Scholar
  34. Richardson RS, Poole DC, Knight DR, Kurdak SS, Hogan MC, Grassi B, Johnson EC, Kendrick KF, Erickson BK, Wagner PD (1993) High muscle blood flow in man: is maximal O2 extraction compromised? J Appl Physiol 75:1911–1916PubMedGoogle Scholar
  35. Saltin B, Blomqvist G, Mitchell JH, Johnson RL Jr, Wildenthal K, Chapman CB (1968) Response to exercise after bed rest and after training. Circulation 38:VII1–VII78PubMedGoogle Scholar
  36. Sheriff DD, Hakeman AL (2001) Role of speed vs grade in relation to muscle pump function at locomotion onset. J Appl Physiol 91:269–276PubMedGoogle Scholar
  37. Swanson GD, Hughson RL (1988) On the modelling and interpretation of oxygen uptake kinetics from ramp work rate tests. J Appl Physiol 65:2453–2458PubMedGoogle Scholar
  38. Trappe S, Harber M, Creer A, Gallagher P, Slivka D, Minchev K, Whitsett D (2006) Single muscle fibre adaptations with marathon training. J Appl Physiol 101:721–727. doi:10.1152/japplphysiol.01595.2005 PubMedCrossRefGoogle Scholar
  39. Tschakovsky ME, Hughson RL (2003) Rapid blunting of sympathetic vasoconstriction in the human forearm at the onset of exercise. J Appl Physiol 94:1785–1792PubMedGoogle Scholar
  40. Van Beekvelt MC, Borghuis MS, Van Engelen BG, Wevers RA, Colier WN (2001) Adipose tissue thickness affects in vivo quantitative near-infrared spectroscopy in human skeletal muscle. Clin Sci 101:21–28. doi:10.1042/CS20000247 PubMedCrossRefGoogle Scholar
  41. Warner HR, Cox A (1962) A mathematical model of heart rate control by sympathetic and vagus efferent information. J Appl Physiol 17:349–355PubMedGoogle Scholar
  42. Woodman CR, Schrage WG, Rush JW, Ray CA, Price EM, Hasser EM, Laughlin MH (2001) Hindlimb unweighting decreases endothelium-dependent dilation and eNOS expression in soleus not gastrocnemius. J Appl Physiol 91:1091–1098PubMedGoogle Scholar
  43. Wunsch SA, Muller-Delp J, Delp MD (2000) Time course of vasodilatory responses in skeletal muscle arterioles: role in hyperemia at onset of exercise. Am J Physiol Heart Circ Physiol 279:H1715–H1723PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jan Boone
    • 1
    • 2
  • Katrien Koppo
    • 1
  • Thomas J. Barstow
    • 3
  • Jacques Bouckaert
    • 1
    • 2
  1. 1.Department of Movement and Sports SciencesGhent UniversityGhentBelgium
  2. 2.Center of Sports MedicineUniversity Hospital of GhentGhentBelgium
  3. 3.Department of KinesiologyKansas State UniversityManhattanUSA

Personalised recommendations