European Journal of Applied Physiology

, Volume 105, Issue 5, pp 731–738 | Cite as

Effect of high intensity intermittent training on heart rate variability in prepubescent children

  • François-Xavier Gamelin
  • Georges Baquet
  • Serge Berthoin
  • Delphine Thevenet
  • Cedric Nourry
  • Stéphane Nottin
  • Laurent Bosquet
Original Article

Abstract

The purpose of this study was to observe the effect of high intermittent exercise training on children’s heart rate variability (HRV). Thirty-eight children (age 9.6 ± 1.2 years) were divided into an intermittent (IT, n = 22) and a control group (CON, n = 16). At baseline and after a 7-week training period, HRV parameters, peak oxygen consumption \( (\dot{V}{\text{O}}_{{2{\text{peak}}}} ) \) and maximal aerobic velocity (MAV) were assessed. Training consisted of three 30-min sessions composed by short maximal and supramaximal runs at velocities ranging from 100 up to 190% of MAV. HRV was computed in time and frequency domains. Training resulted in a significant increase in MAV and \( \dot{V}{\text{O}}_{{2{\text{peak}}}} \) in IT (P < 0.05) only without any significant change in HRV parameters for the two groups. Thus, 7 weeks of high intermittent exercise training allows to improve aerobic fitness. However, this modality of training was not sufficient enough to underline a possible effect on the heart rate autonomic regulation in children.

Keywords

Autonomic nervous system Intermittent exercise Physical activity Poincaré analysis Prepubescent 

References

  1. Achten J, Jeukendrup AE (2003) Heart rate monitoring: applications and limitations. Sports Med 33:517–538. doi:10.2165/00007256-200333070-00004 PubMedCrossRefGoogle Scholar
  2. Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33:889–919. doi:10.2165/00007256-200333120-00003 PubMedCrossRefGoogle Scholar
  3. Baquet G, Berthoin S, Dupont G, Blondel N, Fabre C, van Praagh E (2002) Effects of high intensity intermittent training on peak VO(2) in prepubertal children. Int J Sports Med 23:439–444. doi:10.1055/s-2002-33742 PubMedCrossRefGoogle Scholar
  4. Baquet G, van Praagh E, Berthoin S (2003) Endurance training and aerobic fitness in young people. Sports Med 33:1127–1143. doi:10.2165/00007256-200333150-00004 PubMedCrossRefGoogle Scholar
  5. Berthoin S, Baquet G, Rabita J, Blondel N, Lensel-Corbeil G, Gerbeaux M (1999) Validity of the Universite de Montreal Track Test to assess the velocity associated with peak oxygen uptake for adolescents. J Sports Med Phys Fitness 39:107–112PubMedGoogle Scholar
  6. Berthoin S, Baquet G, Dupont G, Van Praagh E (2006) Critical velocity during continuous and intermittent exercises in children. Eur J Appl Physiol 98:132–138. doi:10.1007/s00421-006-0253-2 PubMedCrossRefGoogle Scholar
  7. Billman GE (2002) Aerobic exercise conditioning: a nonpharmacological antiarrhythmic intervention. J Appl Physiol 92:446–454PubMedGoogle Scholar
  8. Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48:1342–1347. doi:10.1109/10.959330 PubMedCrossRefGoogle Scholar
  9. Cevese A, Gulli G, Polati E, Gottin L, Grasso R (2001) Baroreflex and oscillation of heart period at 0.1 Hz studied by alpha-blockade and cross-spectral analysis in healthy humans. J Physiol 531:235–244. doi:10.1111/j.1469-7793.2001.0235j.x PubMedCrossRefGoogle Scholar
  10. Cohen J (1988) Statistical power analysis for the behavioral sciences. Hillsdale, New JerseyGoogle Scholar
  11. Dishman RK, Nakamura Y, Garcia ME, Thompson RW, Dunn AL, Blair SN (2000) Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. Int J Psychophysiol 37:121–133. doi:10.1016/S0167-8760(00)00085-4 PubMedCrossRefGoogle Scholar
  12. Dupont G, Blondel N, Berthoin S (2003) Time spent at VO2max: a methodological issue. Int J Sports Med 24:291–297. doi:10.1055/s-2003-39503 PubMedCrossRefGoogle Scholar
  13. Earnest CP, Lavie CJ, Blair SN, Church TS (2008) Heart rate variability characteristics in sedentary postmenopausal women following six months of exercise training: the DREW study. PLoS ONE 3:e2288. doi:10.1371/journal.pone.0002288 PubMedCrossRefGoogle Scholar
  14. Franks PW, Boutcher SH (2003) Cardiovascular response of trained preadolescent boys to mental challenge. Med Sci Sports Exerc 35:1429–1435. doi:10.1249/01.MSS.0000078935.78895.8E PubMedCrossRefGoogle Scholar
  15. Gamelin FX, Berthoin S, Bosquet L (2006) Validity of the polar S810 heart rate monitor to measure R–R intervals at rest. Med Sci Sports Exerc 38:887–893. doi:10.1249/01.mss.0000218135.79476.9c PubMedCrossRefGoogle Scholar
  16. Gamelin FX, Baquet G, Berthoin S, Bosquet L (2008) Validity of the polar S810 to measure R–R intervals in children. Int J Sports Med 29:134–138. doi:10.1055/s-2007-964995 PubMedCrossRefGoogle Scholar
  17. Gutin B, Barbeau P, Litaker MS, Ferguson M, Owens S (2000) Heart rate variability in obese children: relations to total body and visceral adiposity, and changes with physical training and detraining. Obes Res 8:12–19. doi:10.1038/oby.2000.3 PubMedCrossRefGoogle Scholar
  18. Hayano J, Yamada A, Mukai S, Sakakibara Y, Yamada M, Ohte N, Hashimoto T, Fujinami T, Takata K (1991) Severity of coronary atherosclerosis correlates with the respiratory component of heart rate variability. Am Heart J 121:1070–1079. doi:10.1016/0002-8703(91)90664-4 PubMedCrossRefGoogle Scholar
  19. Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39:665–671. doi:10.1249/mss.0b013e3180304570 PubMedCrossRefGoogle Scholar
  20. Iellamo F, Legramante JM, Pigozzi F, Spataro A, Norbiato G, Lucini D, Pagani M (2002) Conversion from vagal to sympathetic predominance with strenuous training in high-performance world class athletes. Circulation 105:2719–2724. doi:10.1161/01.CIR.0000018124.01299.AE PubMedCrossRefGoogle Scholar
  21. Iwasaki K, Zhang R, Zuckerman JH, Levine BD (2003) Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J Appl Physiol 95:1575–1583PubMedGoogle Scholar
  22. Javorka M, Javorkova J, Tonhajzerova I, Calkovska A, Javorka K (2005) Heart rate variability in young patients with diabetes mellitus and healthy subjects explored by Poincare and sequence plots. Clin Physiol Funct Imaging 25:119–127. doi:10.1111/j.1475-097X.2004.00601.x PubMedCrossRefGoogle Scholar
  23. Kingsley M, Lewis MJ, Marson RE (2005) Comparison of polar 810 s and an ambulatory ECG system for R–R interval measurement during progressive exercise. Int J Sports Med 26:39–44. doi:10.1055/s-2004-817878 PubMedCrossRefGoogle Scholar
  24. Lee CM, Wood RH, Welsch MA (2003) Influence of short-term endurance exercise training on heart rate variability. Med Sci Sports Exerc 35:961–969. doi:10.1249/01.MSS.0000069410.56710.DA PubMedCrossRefGoogle Scholar
  25. Lenard Z, Studinger P, Mersich B, Kocsis L, Kollai M (2004) Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation 110:2307–2312. doi:10.1161/01.CIR.0000145157.07881.A3 PubMedCrossRefGoogle Scholar
  26. Mandigout S, Melin A, Fauchier L, N’Guyen LD, Courteix D, Obert P (2002) Physical training increases heart rate variability in healthy prepubertal children. Eur J Clin Invest 32:479–487. doi:10.1046/j.1365-2362.2002.01017.x PubMedCrossRefGoogle Scholar
  27. Massin M, von Bernuth G (1998) Clinical and haemodynamic correlates of heart rate variability in children with congenital heart disease. Eur J Pediatr 157:967–971. doi:10.1007/s004310050979 PubMedCrossRefGoogle Scholar
  28. Molgaard H, Sorensen KE, Bjerregaard P (1991) Attenuated 24-h heart rate variability in apparently healthy subjects, subsequently suffering sudden cardiac death. Clin Auton Res 1:233–237. doi:10.1007/BF01824992 PubMedCrossRefGoogle Scholar
  29. Mourot L, Bouhaddi M, Perrey S, Rouillon JD, Regnard J (2004) Quantitative Poincare plot analysis of heart rate variability: effect of endurance training. Eur J Appl Physiol 91:79–87. doi:10.1007/s00421-003-0917-0 PubMedCrossRefGoogle Scholar
  30. Nagai N, Hamada T, Kimura T, Moritani T (2004) Moderate physical exercise increases cardiac autonomic nervous system activity in children with low heart rate variability. Childs Nerv Syst 20:209–214. doi:10.1007/s00381-004-0915-5 discussion 215PubMedCrossRefGoogle Scholar
  31. Otsuka K, Cornelissen G, Halberg F (1997) Age, gender and fractal scaling in heart rate variability. Clin Sci (Lond) 93:299–308Google Scholar
  32. Pichot V, Busso T, Roche F, Garet M, Costes F, Duverney D, Lacour JR, Barthelemy JC (2002) Autonomic adaptations to intensive and overload training periods: a laboratory study. Med Sci Sports Exerc 34:1660–1666. doi:10.1097/00005768-200210000-00019 PubMedCrossRefGoogle Scholar
  33. Portier H, Louisy F, Laude D, Berthelot M, Guezennec CY (2001) Intense endurance training on heart rate and blood pressure variability in runners. Med Sci Sports Exerc 33:1120–1125. doi:10.1097/00005768-200107000-00009 PubMedGoogle Scholar
  34. Rentero N, Cividjian A, Trevaks D, Pequignot JM, Quintin L, McAllen RM (2002) Activity patterns of cardiac vagal motoneurons in rat nucleus ambiguus. Am J Physiol Regul Integr Comp Physiol 283:R1327–R1334PubMedGoogle Scholar
  35. Ruha A, Sallinen S, Nissila S (1997) A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV. IEEE Trans Biomed Eng 44:159–167. doi:10.1109/10.554762 PubMedCrossRefGoogle Scholar
  36. Sandercock GR, Bromley PD, Brodie DA (2005) Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc 37:433–439. doi:10.1249/01.MSS.0000155388.39002.9D PubMedCrossRefGoogle Scholar
  37. Silvetti MS, Drago F, Ragonese P (2001) Heart rate variability in healthy children and adolescents is partially related to age and gender. Int J Cardiol 81:169–174. doi:10.1016/S0167-5273(01)00537-X PubMedCrossRefGoogle Scholar
  38. Tanner JM (1962) Growth at adolescence. Blackwell, OxfordGoogle Scholar
  39. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065Google Scholar
  40. Triposkiadis F, Ghiokas S, Skoularigis I, Kotsakis A, Giannakoulis I, Thanopoulos V (2002) Cardiac adaptation to intensive training in prepubertal swimmers. Eur J Clin Invest 32:16–23. doi:10.1046/j.0014-2972.2001.00939.x PubMedCrossRefGoogle Scholar
  41. Tulppo MP, Makikallio TH, Takala TE, Seppanen T, Huikuri HV (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol 271:H244–H252PubMedGoogle Scholar
  42. Verheyden B, Eijnde BO, Beckers F, Vanhees L, Aubert AE (2006) Low-dose exercise training does not influence cardiac autonomic control in healthy sedentary men aged 55–75 years. J Sports Sci 24:1137–1147. doi:10.1080/02640410500497634 PubMedCrossRefGoogle Scholar
  43. Vinet A, Beck L, Nottin S, Obert P (2005) Effect of intensive training on heart rate variability in prepubertal swimmers. Eur J Clin Invest 35:610–614. doi:10.1111/j.1365-2362.2005.01557.x PubMedCrossRefGoogle Scholar
  44. Winsley RJ, Armstrong N, Bywater K, Fawkner SG (2003) Reliability of heart rate variability measures at rest and during light exercise in children. Br J Sports Med 37:550–552. doi:10.1136/bjsm.37.6.550 PubMedCrossRefGoogle Scholar
  45. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094. doi:10.1161/CIRCULATIONAHA.106.675041 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • François-Xavier Gamelin
    • 1
  • Georges Baquet
    • 1
  • Serge Berthoin
    • 1
  • Delphine Thevenet
    • 2
  • Cedric Nourry
    • 1
  • Stéphane Nottin
    • 3
  • Laurent Bosquet
    • 1
    • 4
  1. 1.LEMH, Laboratory of Human Movement Studies (EA 3608), Faculty of Sport SciencesUniversity of Lille 2RonchinFrance
  2. 2.Laboratory of Human Movement, Interaction and Performance (JE2438), UFRSTAPSUniversity of NantesNantesFrance
  3. 3.Laboratory of Cardiovascular Adaptations to Exercise (JE2426), Faculty of ScienceUniversity of AvignonAvignonFrance
  4. 4.Department of KinesiologyUniversity of MontrealMontrealCanada

Personalised recommendations