European Journal of Applied Physiology

, Volume 105, Issue 5, pp 705–713

Changes in heart rate recovery after high-intensity training in well-trained cyclists

  • Robert P. Lamberts
  • Jeroen Swart
  • Timothy D. Noakes
  • Michael I. Lambert
Original Article


Heart rate recovery (HRR) after submaximal exercise improves after training. However, it is unknown if this also occurs in already well-trained cyclists. Therefore, 14 well-trained cyclists (VO2max 60.3 ± 7.2 ml kg−1 min−1; relative peak power output 5.2 ± 0.6 W kg−1) participated in a high-intensity training programme (eight sessions in 4 weeks). Before and after high-intensity training, performance was assessed with a peak power output test including respiratory gas analysis (VO2max) and a 40-km time trial. HRR was measured after every high-intensity training session and 40-km time trial. After the training period peak power output, expressed as W kg−1, improved by 4.7% (P = 0.000010) and 40-km time trial improved by 2.2% (P = 0.000007), whereas there was no change in VO2max (P = 0.066571). Both HRR after the high intensity training sessions (7 ± 6 beats; P = 0.001302) and HRR after the 40-km time trials (6 ± 3 beats; P = 0.023101) improved significantly after the training period. Good relationships were found between improvements in HRR40-km and improvements in peak power output (r = 0.73; P < 0.0001) and 40-km time trial time (r = 0.96; P < 0.0001). In conclusion, HRR is a sensitive marker which tracks changes in training status in already well-trained cyclists and has the potential to have an important role in monitoring and prescribing training.


Cycling Monitoring Performance Adaptation Autonomic nervous system 


  1. Altman DG (1991) Practical statistics for medical research. Chapman and Hall, LondonGoogle Scholar
  2. American College of Sports Medicine (2007) Preparticipation health screening and risk stratification. In: Whaley MH, Brubaker PH, Otto RM (eds) ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins, Baltimore, p 26Google Scholar
  3. Baumert M, Brechtel L, Lock J, Hermsdorf M, Wolff R, Baier V, Voss A (2006) Heart rate variability, blood pressure variability, and baroreflex sensitivity in overtrained athletes. Clin J Sports Med 16:412–417. doi:10.1097/01.jsm.0000244610.34594.07 CrossRefGoogle Scholar
  4. Boas EP (1931) The heart rate of boys during and after exhausting exercise. J Clin Invest 10:145–152. doi:10.1172/JCI100335 PubMedCrossRefGoogle Scholar
  5. Borresen J, Lambert MI (2007) Changes in heart rate recovery in response to acute changes in training load. Eur J Appl Physiol 101:503–511. doi:10.1007/s00421-007-0516-6 PubMedCrossRefGoogle Scholar
  6. Borresen J, Lambert MI (2008) Autonomic control of heart rate during and after exercise—measurements and implications for monitoring training status. Sports Med 28:633–646. doi:10.2165/00007256-200838080-00002 CrossRefGoogle Scholar
  7. Buchheit M, Gindre C (2006) Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. Am J Physiol Heart Circ Physiol 291:H451–H458. doi:10.1152/ajpheart.00008.2006 PubMedCrossRefGoogle Scholar
  8. Buchheit M, Papelier Y, Laursen PB, Ahmaidi S (2007) Noninvasive assessment of cardiac parasympathetic function: postexercise heart rate recovery or heart rate variability? Am J Physiol Heart Circ Physiol 293:H8–H10. doi:10.1152/ajpheart.00335.2007 PubMedCrossRefGoogle Scholar
  9. Buchheit M, Millet GP, Parisy A, Pourchez S, Laursen PB, Ahmaidi S (2008) Supramaximal training and postexercise parasympathetic reactivation in adolescents. Med Sci Sports Exerc 40:362–371PubMedCrossRefGoogle Scholar
  10. Bunc V, Heller J, Leso J (1988) Kinetics of heart rate responses to exercise. J Sports Sci 6:39–48PubMedGoogle Scholar
  11. Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS (1999) Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 341:1351–1357. doi:10.1056/NEJM199910283411804 PubMedCrossRefGoogle Scholar
  12. Davidson RCR, Corbett J, Ansley L (2007) Influence of temperature and protocol on the calibration of the computrainer electromagnetically braked cycling ergometer. J Sports Sci 25:257–258Google Scholar
  13. Durnin JVGA, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32:77–97. doi:10.1079/BJN19740060 PubMedCrossRefGoogle Scholar
  14. Gnehm P, Reichenbach S, Altpeter E, Widmer H, Hoppeler H (1997) Influence of different racing positions on metabolic cost in elite cyclists. Med Sci Sports Exerc 29:818–823. doi:10.1097/00005768-199706000-00013 PubMedGoogle Scholar
  15. Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol Occup Physiol 65:79–83. doi:10.1007/BF01466278 PubMedCrossRefGoogle Scholar
  16. Hedelin R, Kenttä G, Wiklund U, Bjerle P, Henriksson-Larsen K (2000) Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Med Sci Sports Exerc 32:1480–1484. doi:10.1097/00005768-200008000-00017 PubMedCrossRefGoogle Scholar
  17. Heffernan KS, Kelly EE, Collier SR, Fernhall B (2006) Cardiac autonomic modulation during recovery from acute endurance versus resistance exercise. Eur J Cardiovasc Prev Rehabil 13:80–86. doi:10.1097/00149831-200602000-00012 PubMedCrossRefGoogle Scholar
  18. Jeukendrup A (2002) High-performance cycling. Human Kinetics Publishers, Inc, ChampaignGoogle Scholar
  19. Jeukendrup AE, Craig NP, Hawley JA (2000) The bioenergetics of world class cycling. J Sci Med Sport 3:414–433. doi:10.1016/S1440-2440(00)80008-0 PubMedCrossRefGoogle Scholar
  20. Kaikkonen P, Rusko H, Martinmaki K (2008) Post-exercise heart rate variability of endurance athletes after different high-intensity exercise interventions. Scand J Med Sci Sports 18:511–519PubMedCrossRefGoogle Scholar
  21. Kannankeril PJ, Le FK, Kadish AH, Goldberger JJ (2004) Parasympathetic effects on heart rate recovery after exercise. J Investig Med 52:394–401. doi:10.2310/6650.2004.00611 PubMedCrossRefGoogle Scholar
  22. Kenttä G, Hassmen P (1998) Overtraining and recovery. A conceptual model. Sports Med 26:1–16. doi:10.2165/00007256-199826010-00001 PubMedCrossRefGoogle Scholar
  23. Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP (2007) Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol 101:743–751. doi:10.1007/s00421-007-0552-2 PubMedCrossRefGoogle Scholar
  24. Kuipers H (1998) Training and overtraining: an introduction. Med Sci Sports Exerc 30:1137–1139. doi:10.1097/00005768-199807000-00018 PubMedCrossRefGoogle Scholar
  25. Lambert MI, Borresen J (2006) A theoretical basis of monitoring fatigue: a practical approach for coaches. Int J Sports Sci Coaching 1:371–388. doi:10.1260/174795406779367684 CrossRefGoogle Scholar
  26. Lamberts RP, Lambert MI (2009) Day-to-day variation in heart rate at different levels of submaximal exertion: implications for monitoring training. J Strength Cond Res (in press)Google Scholar
  27. Lamberts RP, Lemmink KA, Durandt JJ, Lambert MI (2004) Variation in heart rate during submaximal exercise: implications for monitoring training. J Strength Cond Res 18:641–645. doi :10.1519/1533-4287(2004)18<641:VIHRDS>2.0.CO;2PubMedCrossRefGoogle Scholar
  28. Lamberts RP, Swart J, Woolrich RW, Noakes TD, Lambert MI (2008) Measurement error associated with performance testing in well-trained cyclists; application to the precision of monitoring changes in training status. Int Sports Med J (in press)Google Scholar
  29. Laursen PB, Jenkins DG (2002) The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32:53–73. doi:10.2165/00007256-200232010-00003 PubMedCrossRefGoogle Scholar
  30. Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG (2002) Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc 34:1801–1807. doi:10.1097/00005768-200211000-00017 PubMedCrossRefGoogle Scholar
  31. Lehmann MJ, Lormes W, Opitz-Gress A, Steinacker JM, Netzer N, Foster C, Gastmann U (1997) Training and overtraining: an overview and experimental results in endurance sports. J Sports Med Phys Fitness 37:7–17PubMedGoogle Scholar
  32. Lehmann M, Foster C, Dickhuth HH, Gastmann U (1998) Autonomic imbalance hypothesis and overtraining syndrome. Med Sci Sports Exerc 30:1140–1145. doi:10.1097/00005768-199807000-00019 PubMedCrossRefGoogle Scholar
  33. Lucia A, Hoyos J, Santalla A, Perez M, Chicharro JL (2002a) Kinetics of VO2 in professional cyclists. Med Sci Sports Exerc 34:320–325. doi:10.1097/00005768-200203000-00021 PubMedCrossRefGoogle Scholar
  34. Lucia A, Rivero JL, Perez M, Serrano AL, Calbet JA, Santalla A, Chicharro JL (2002b) Determinants of VO2 kinetics at high power outputs during a ramp exercise protocol. Med Sci Sports Exerc 34:326–331. doi:10.1097/00005768-200203000-00021 PubMedCrossRefGoogle Scholar
  35. Meeusen R, Duclos M, Gleeson M, Rietjens G, Steinacker J, Urhausen A (2006) Prevention, diagnosis and treatment of the overtraining syndrome. Eur J Sport Sci 6:1–14. doi:10.1080/17461390600617717 CrossRefGoogle Scholar
  36. Mujika I, Padilla S (2001) Physiological and performance characteristics of male professional road cyclists. Sports Med 31:479–487. doi:10.2165/00007256-200131070-00003 PubMedCrossRefGoogle Scholar
  37. Noakes TD (2008) Testing for maximum oxygen consumption has produced a brainless mode of human exercise performance. Br J Sports Med 42:551–555. doi:10.1136/bjsm.2008.046821 PubMedCrossRefGoogle Scholar
  38. Padilla S, Mujika I, Orbananos J, Angulo F (2000) Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc 32:850–856. doi:10.1097/00005768-200004000-00019 PubMedCrossRefGoogle Scholar
  39. Ross WD, Marfell-Jones MJ (1991) Kinanthropometry. In: MacDougall JD, Wenger HA, Green HS (eds) Physiological testing of the high performance athlete. Human Kinetics, Champaign, pp 223–308Google Scholar
  40. Seiler S, Haugen O, Kuffel E (2007) Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc 39:1366–1373. doi:10.1249/mss.0b013e318060f17d PubMedCrossRefGoogle Scholar
  41. Shepley B, MacDougall JD, Cipriano N, Sutton JR, Tarnopolsky MA, Coates G (1992) Physiological effects of tapering in highly trained athletes. J Appl Physiol 72:706–711PubMedGoogle Scholar
  42. Shetler K, Marcus R, Froelicher VF, Vora S, Kalisetti D, Prakash M, Myers J, Do D (2001) Heart rate recovery: validation and methodologic issues. J Am Coll Cardiol 38:1980–1987. doi:10.1016/S0735-1097(01)01652-7 PubMedCrossRefGoogle Scholar
  43. Short KR, Sedlock DA (1997) Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol 83:153–159PubMedGoogle Scholar
  44. Solberg G, Robstad B, Skjønsberg OH, Borchsenius F (2005) Respiratory gas exchange indices for estimating the anaerobic threshold. J Sports Sci Med 4:29–36Google Scholar
  45. Stepto NK, Hawley JA, Dennis SC, Hopkins WG (1999) Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc 31:736–741. doi:10.1097/00005768-199905000-00018 PubMedCrossRefGoogle Scholar
  46. Sugawara J, Murakami H, Maeda S, Kuno S, Matsuda M (2001) Change in post-exercise vagal reactivation with exercise training and detraining in young men. Eur J Appl Physiol 85:259–263. doi:10.1007/s004210100443 PubMedCrossRefGoogle Scholar
  47. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065Google Scholar
  48. Yamamoto K, Miyachi M, Saitoh T, Yoshioka A, Onodera S (2001) Effects of endurance training on resting and post-exercise cardiac autonomic control. Med Sci Sports Exerc 33:1496–1502. doi:10.1097/00005768-200109000-00012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Robert P. Lamberts
    • 1
  • Jeroen Swart
    • 1
  • Timothy D. Noakes
    • 1
  • Michael I. Lambert
    • 1
  1. 1.Department of Human Biology, Faculty of Health Sciences, UCT/MRC Research Unit for Exercise Science and Sports Medicine, The Sport Science Institute of South AfricaUniversity of Cape TownNewlandsSouth Africa

Personalised recommendations