European Journal of Applied Physiology

, Volume 105, Issue 4, pp 633–641 | Cite as

Upper body power as a determinant of classical cross-country ski performance

Original Article


The purpose of this study was to evaluate the relationship between short (≤60 s) and long duration (4–12 min) measures of upper body power (UBP) and mass start classical cross-country ski performance. Several experienced skiers (eight men, five women) completed three separate tests of UBP on a double poling ergometer: two tests of highest average power output for 10 s (UBP10) and 60 s (UBP60), and an incremental test to exhaustion to measure peak oxygen uptake (VO2PEAK) and peak power output (UBPPEAK). Lastly, subjects competed in a 10-km classical cross-country ski race from which race speed (RS) was computed. RS correlated highly with UBP10 (r = 0.93; P < 0.05), UBP60 (r = 0.92; P < 0.05), and UBPPEAK (r = 0.94; P < 0.05); the correlation was lower but still significant for VO2PEAK (r = 0.88; P < 0.05). These findings suggest that both short and long duration measures of UBP are important determinants of mass start classical ski race performance.


Cross-country skiing Double poling Endurance athletes Ergometer Peak oxygen uptake 



The authors would like to thank the Montana State University men’s and women’s Nordic ski teams, skiers from the Bridger Ski Foundation, and other local master Nordic skiers for their enthusiastic participation in this study.


  1. American College of Sports Medicine (2008) ACSM’s health-related physical fitness assessment manual, 2nd edn. Lippincott, New York, pp 57–58Google Scholar
  2. Bergh U (1987) Influence of body mass in cross-country skiing. Med Sci Sports Exerc 19:324–331. doi: 10.1249/00005768-198708000-00002 PubMedGoogle Scholar
  3. Bourdin M, Messonnier L, Hager JP, Lacour JR (2004) Peak power output predicts rowing ergometer performance in elite male rowers. Int J Sports Med 25:368–373. doi: 10.1055/s-2004-815844 PubMedCrossRefGoogle Scholar
  4. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, HillsdaleGoogle Scholar
  5. Coyle EF, Feltner ME, Kautz SA, Hamilton MT, Montain SJ, Baylor AM, Abraham LD, Petrek GW (1991) Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 23:93–107. doi: 10.1249/00005768-199101000-00015 PubMedGoogle Scholar
  6. Gaskill SE, Serfass RC, Rundell KW (1999) Upper body power comparison between groups of cross-country skiers and runners. Int J Sports Med 20:290–294. doi: 10.1055/s-2007-971133 PubMedCrossRefGoogle Scholar
  7. Hawley JA, Williams MM, Vickovic MM, Handcock PJ (1992) Muscle power predicts freestyle swimming performance. Br J Sports Med 26:151–155PubMedCrossRefGoogle Scholar
  8. Heil DP (2005) Body size as a determinant of the 1-h cycling record at sea level and altitude. Eur J Appl Physiol 93:547–554. doi: 10.1007/s00421-004-1256-5 PubMedCrossRefGoogle Scholar
  9. Heil DP, Murphy OF, Mattingly AR, Higginson BK (2001) Prediction of uphill time-trial bicycling performance in humans with a scaling-derived protocol. Eur J Appl Physiol 85:374–382. doi: 10.1007/s004210100442 PubMedCrossRefGoogle Scholar
  10. Heil DP, Engen J, Higginson BK (2004) Influence of ski pole grip on peak upper body power output in cross-country skiers. Eur J Appl Physiol 91:481–487. doi: 10.1007/s00421-003-0992-2 PubMedCrossRefGoogle Scholar
  11. Hoff J, Helgerud J, Wisloff U (1999) Maximal strength training improves work economy in trained female cross-country skiers. Med Sci Sports Exerc 31:870–877. doi: 10.1097/00005768-199906000-00016 PubMedCrossRefGoogle Scholar
  12. Hoff J, Gran A, Helgerud J (2002) Maximal strength training improves aerobic endurance performance. Scand J Med Sci Sports 12:288–295. doi: 10.1034/j.1600-0838.2002.01140.x PubMedCrossRefGoogle Scholar
  13. Holmberg H, Nilsson J (2008) Reliability and validity of a new double poling ergometer for cross-country skiers. J Sports Sci 26:171–179. doi: 10.1080/02640410701372685 PubMedCrossRefGoogle Scholar
  14. Holmberg H, Lindinger S, Stoggl T, Eitzlmair E, Muller E (2005) Biomechanical analysis of double poling in elite cross-country skiers. Med Sci Sports Exerc 37:807–818. doi: 10.1249/01.MSS.0000162615.47763.C8 PubMedCrossRefGoogle Scholar
  15. Holmberg H, Lindinger S, Stoggl T, Bjorklund G, Muller E (2006) Contribution of the legs to double-poling performance in elite cross-country skiers. Med Sci Sports Exerc 38:1853–1860. doi: 10.1249/01.mss.0000230121.83641.d1 PubMedCrossRefGoogle Scholar
  16. Komi PV (1987) Force measurement during cross-country skiing. Int J Sport Biomech 3:370–381Google Scholar
  17. Kuipers H, Verstappen FTJ, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6:197–201PubMedCrossRefGoogle Scholar
  18. Mahood NV, Kenefick RW, Kertzer R, Quinn TJ (2000) Physiological determinants of cross-country ski racing performance. Med Sci Sports Exerc 33:1379–1384. doi: 10.1097/00005768-200108000-00020 Google Scholar
  19. Mygind E, Andersen LB, Rasmussen B (1994) Blood lactate and respiratory variables in elite cross-country skiing at racing speeds. Scand J Med Sci Sports 4:243–251CrossRefGoogle Scholar
  20. Nilsson JE, Holmberg HC, Tveit P, Hallen J (2004) Effects of 20-s and 180-s double poling interval training in cross-country skiers. Eur J Appl Physiol 92:121–127. doi: 10.1007/s00421-004-1042-4 PubMedCrossRefGoogle Scholar
  21. Noakes TD, Myburgh KH, Schall R (1990) Peak treadmill running velocity during the VO2max test predicts running performance. J Sports Sci 8:35–45PubMedGoogle Scholar
  22. Olds T (2001) Modelling human locomotion: applications to cycling. Sports Med 31:497–509. doi: 10.2165/00007256-200131070-00005 PubMedCrossRefGoogle Scholar
  23. Osteras H, Helgerud J, Hoff J (2002) Maximal strength-training effects on force-velocity and force-power relationships explain increases in aerobic performance in humans. Eur J Appl Physiol 88:255–263. doi: 10.1007/s00421-002-0717-y PubMedCrossRefGoogle Scholar
  24. Pate RR, Branch JD (1992) Training for endurance sport. Med Sci Sports Exerc 24:S340–S343PubMedGoogle Scholar
  25. Soper C, Hume PA (2004) Reliability of power output during rowing changes with ergometer type and race distance. Sports Biomech 3:237–248PubMedCrossRefGoogle Scholar
  26. Staib JL, Im J, Caldwell Z, Rundell KW (2000) Cross-country ski racing performance predicted by aerobic and anaerobic double poling power. J Strength Cond Res 14:282–288. doi:10.1519/1533-4287(2000)014<0282:CCSRPP>2.0.CO;2CrossRefGoogle Scholar
  27. Stoggl T, Lindinger S, Muller E (2006) Reliability and validity of test concepts for the cross-country skiing sprint. Med Sci Sports Exerc 38:586–591. doi: 10.1249/01.mss.0000190789.46685.22 PubMedCrossRefGoogle Scholar
  28. Stoggl T, Lindinger S, Muller E (2007a) Evaluation of an upper-body strength test for the cross-country skiing sprint. Med Sci Sports Exerc 39:1160–1169. doi: 10.1249/mss.0b013e3180537201 PubMedCrossRefGoogle Scholar
  29. Stoggl T, Lindinger S, Muller E (2007b) Analysis of a simulated sprint competition in classical cross country skiing. Scand J Med Sci Sports 17:362–372PubMedGoogle Scholar
  30. Street GM (1989) Kinetic analysis of the V1 skate technique during roller skiing. Med Sci Sports Exerc 21:S79Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Athletic DepartmentBowdoin CollegeBrunswick04011USA
  2. 2.Movement Science/Human Performance Lab, Department of Health and Human DevelopmentMontana State UniversityBozemanUSA

Personalised recommendations