Healthy humans use sex-specific co-ordination patterns of trunk muscles during gait

  • C. AndersEmail author
  • H. Wagner
  • C. Puta
  • R. Grassme
  • H. C. Scholle
Original Article


Human gait patterns differ considerably between the sexes. Therefore sex specific trunk muscle activation patterns can be expected. Healthy volunteers of both sexes (51 women, 55 men) walked on a treadmill at speeds from 2 to 6 km/h. Surface electormyography was recorded from five pairs of trunk muscles. Grand averaged root mean square (rms) curves and amplitude normalised curves were calculated. Mean amplitudes and relative amplitudes were calculated as well. Mean amplitudes as well as relative amplitude levels were not generally sex specific, but differed for single muscles. Grand averaged rms curves of all investigated muscles differed between sexes. At low walking speeds, differences mostly originated from mean amplitude level differences, alternating between sexes. At higher walking speeds, amplitude curves became more phasic, differences again alternated between sexes. Therefore, trunk muscle co-ordination during gait is sex-specific. Any interpretation of trunk muscle co-ordination patterns during gait requires sex specific normatives.


Gait analysis Electromyography Trunk muscles Muscle co-ordination Sex differences 



The study was supported by the Centre of Competence for Interdisciplinary Prevention of the University of Jena and the BGN. The authors would like to thank Mrs Elke Mey for technical assistance, Ms Claudia Schneider and Mr Martin Lesser for taking part at the measurements and Ms Marcie Matthews for language correction. We also would like to thank Prof. David Carrier for improving the article by giving contextual and linguistic support.


  1. Alexander RM (1984) Stride length and speed for adults, children, and fossil hominids. Am J Phys Anthropol 63:23–27. doi: 10.1002/ajpa.1330630105 PubMedCrossRefGoogle Scholar
  2. Anders C, Scholle HC, Wagner H, Puta C, Grassme R, Petrovitch A (2005) Trunk muscle co-ordination during gait: relationship between muscle function and acute low back pain. Pathophysiology 12:243–247. doi: 10.1016/j.pathophys.2005.09.001 PubMedCrossRefGoogle Scholar
  3. Anders C, Wagner H, Puta C, Grassme R, Petrovitch A, Scholle HC (2007) Trunk muscle activation patterns during walking at different speeds. J Electromyogr Kinesiol 17:245–252. doi: 10.1016/j.jelekin.2006.01.002 PubMedCrossRefGoogle Scholar
  4. Bergmark A (1989) Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand 60:1–54Google Scholar
  5. Burden A, Bartlett R (1999) Normalisation of EMG amplitude: an evaluation and comparison of old and new methods. Med Eng Phys 21:247–257. doi: 10.1016/S1350-4533(99)00054-5 PubMedCrossRefGoogle Scholar
  6. Burden AM, Trew M, Baltzopoulos V (2003) Normalisation of gait EMGs: a re-examination. J Electromyogr Kinesiol 13:519–532. doi: 10.1016/S1050-6411(03)00082-8 PubMedCrossRefGoogle Scholar
  7. Callaghan JP, Patla AE, McGill SM (1999) Low back three-dimensional joint forces, kinematics, and kinetics during walking. Clin Biomech (Bristol, Avon) 14:203–216. doi: 10.1016/S0268-0033(98)00069-2 CrossRefGoogle Scholar
  8. Cho SH, Park JM, Kwon OY (2004) Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clin Biomech (Bristol, Avon) 19:145–152. doi: 10.1016/j.clinbiomech.2003.10.003 CrossRefGoogle Scholar
  9. Clark BC, Manini TM, Ploutz-Snyder LL (2003) Derecruitment of the lumbar musculature with fatiguing trunk extension exercise. Spine 28:282–287. doi: 10.1097/00007632-200302010-00015 PubMedCrossRefGoogle Scholar
  10. Comerford MJ, Mottram SL (2001) Movement and stability dysfunction—contemporary developments. Man Ther 6:15–26. doi: 10.1054/math.2000.0388 PubMedCrossRefGoogle Scholar
  11. Craik RL, Oatis CA (1995) Gait analysis, theory and application. Mosby, St LouisGoogle Scholar
  12. Davis RB (1997) Reflections on clinical gait analysis. J Electromyogr Kinesiol 7:251–257. doi: 10.1016/S1050-6411(97)00008-4 PubMedCrossRefGoogle Scholar
  13. De Foa JL, Forrest W, Biedermann HJ (1989) Muscle fibre direction of longissimus, iliocostalis and multifidus: landmark-derived reference lines. J Anat 163:243–247PubMedGoogle Scholar
  14. Dofferhof AS, Vink P (1985) The stabilising function of the mm. iliocostales and the mm. multifidi during walking. J Anat 140(2):329–336PubMedGoogle Scholar
  15. Dubo HI, Peat M, Winter DA, Quanbury AO, Hobson DA, Steinke T et al (1976) Electromyographic temporal analysis of gait: normal human locomotion. Arch Phys Med Rehabil 57:415–420PubMedGoogle Scholar
  16. Elfving B, Nemeth G, Arvidsson I (2000) Back muscle fatigue in healthy men and women studied by electromyography spectral parameters and subjective ratings. Scand J Rehabil Med 32:117–123. doi: 10.1080/003655000750045460 PubMedCrossRefGoogle Scholar
  17. Grasso R, Ivanenko YP, Zago M, Molinari M, Scivoletto G, Castellano V et al (2004) Distributed plasticity of locomotor pattern generators in spinal cord injured patients. Brain 127:1019–1034. doi: 10.1093/brain/awh115 PubMedCrossRefGoogle Scholar
  18. Gregersen GG, Lucas DB (1967) An in vivo study of the axial rotation of the human thoracolumbar spine. J Bone Joint Surg Am 49A:247–262Google Scholar
  19. Gronley JK, Perry J (1984) Gait analysis techniques. Rancho Los Amigos Hospital gait laboratory. Phys Ther 64:1831–1838PubMedGoogle Scholar
  20. Hermens HJ, Freriks B, Merletti R, Stegeman DF, Blok J, Rau G et al (1999) European recommendations for surface ElectroMyoGraphy, results of the SENIAM project. Roessingh Research and Development b.v, RoessinghGoogle Scholar
  21. Hodges PW, Richardson CA (1999) Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehabil 80:1005–1012. doi: 10.1016/S0003-9993(99)90052-7 PubMedCrossRefGoogle Scholar
  22. Hodges PW, Moseley GL, Gabrielsson A, Gandevia SC (2003) Experimental muscle pain changes feedforward postural responses of the trunk muscles. Exp Brain Res 151:262–271. doi: 10.1007/s00221-003-1457-x PubMedCrossRefGoogle Scholar
  23. Ito T, Shirado O, Suzuki H, Takahashi M, Kaneda K, Strax TE (1996) Lumbar trunk muscle endurance testing: an inexpensive alternative to a machine for evaluation. Arch Phys Med Rehabil 77:75–79. doi: 10.1016/S0003-9993(96)90224-5 PubMedCrossRefGoogle Scholar
  24. Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282. doi: 10.1113/jphysiol.2003.057174 PubMedCrossRefGoogle Scholar
  25. Kankaanpää M, Taimela S, Airaksinen O, Hänninen O (1996) Increased gluteal muscle fatigability of the low back pain patients during static endurance test at seated posture. Med Sci Sports Exerc 28:S48. doi: 10.1097/00005768-199605001-00283 Google Scholar
  26. Kankaanpää M, Taimela S, Webber CL, Airaksinen O, Hänninen O (1997) Lumbar paraspinal muscle fatigability in repetitive isoinertial loading: EMG spectral indices, Borg scale and endurance time. Eur J Appl Physiol 76:236–242. doi: 10.1007/s004210050242 CrossRefGoogle Scholar
  27. Kerrigan DC, Todd MK, Della Croce U (1998) Gender differences in joint biomechanics during walking: normative study in young adults. Am J Phys Med Rehabil 77:2–7. doi: 10.1097/00002060-199801000-00002 PubMedCrossRefGoogle Scholar
  28. Kirtley C (2006) CGA normative gait database.
  29. Lamoth CJ, Meijer OG, Daffertshofer A, Wuisman PI, Beek PJ (2005) Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control. Eur Spine J 15:23–40PubMedCrossRefGoogle Scholar
  30. Lariviere C, Arsenault AB, Gravel D, Gagnon D, Loisel P (2002) Evaluation of measurement strategies to increase the reliability of EMG indices to assess back muscle fatigue and recovery. J Electromyogr Kinesiol 12:91–102. doi: 10.1016/S1050-6411(02)00011-1 PubMedCrossRefGoogle Scholar
  31. Lawrence JH, De Luca CJ (1983) Myoelectric signal versus force relationship in different human muscles. J Appl Physiol 54:1653–1659PubMedGoogle Scholar
  32. Leinonen V, Kankaanpaa M, Hanninen O, Airaksinen O, Taimela S (2002) Paraspinal muscle responses during sudden upper limb loading. Eur J Appl Physiol 88:42–49. doi: 10.1007/s00421-002-0664-7 PubMedCrossRefGoogle Scholar
  33. Lundberg A, Vaughan CL (1997) Three-dimensional analysis of human locomotion. Willey, New YorkGoogle Scholar
  34. Mannion AF, Dumas GA, Cooper RG, Espinosa FJ, Faris MW, Stevenson JM (1997) Muscle fiber size and type distribution in thoracic and lumbar regions of erector spinae in healthy subjects without low back pain: normal values and sex differences. J Anat 190(Pt 4):505–513. doi: 10.1046/j.1469-7580.1997.19040505.x PubMedCrossRefGoogle Scholar
  35. Maughan RJ, Watson JS, Weir J (1984) Muscle strength and cross-sectional area in man: a comparison of strength-trained and untrained subjects. Br J Sports Med 18:149–157PubMedCrossRefGoogle Scholar
  36. Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG (1993) Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 66:254–262. doi: 10.1007/BF00235103 PubMedCrossRefGoogle Scholar
  37. Moseley GL, Hodges PW, Gandevia SC (2002) Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine 27:E29–E36. doi: 10.1097/00007632-200201150-00013 PubMedCrossRefGoogle Scholar
  38. Ng JK, Kippers V, Richardson CA (1998) Muscle fibre orientation of abdominal muscles and suggested surface EMG electrode positions. Electromyogr Clin Neurophysiol 38:51–58PubMedGoogle Scholar
  39. Panjabi MM (2002) Consequences of a subfailure injury. A hypothesis of chronic spine pain. IV World Congress of Biomechanics, CalgaryGoogle Scholar
  40. Perron M, Malouin F, Moffet H, McFadyen BJ (2000) Three-dimensional gait analysis in women with a total hip arthroplasty. Clin Biomech (Bristol, Avon) 15:504–515. doi: 10.1016/S0268-0033(00)00002-4 CrossRefGoogle Scholar
  41. Saunders SW, Rath D, Hodges PW (2004) Postural and respiratory activation of the trunk muscles changes with mode and speed of locomotion. Gait Posture 20:280–290. doi: 10.1016/j.gaitpost.2003.10.003 PubMedCrossRefGoogle Scholar
  42. Shrier I, Feldman D, Klvana J, Rossignol M, Abenhaim L (2003) Comparison between tests of fatigue and force for trunk flexion. Spine 28:1373–1378. doi: 10.1097/00007632-200307010-00005 PubMedCrossRefGoogle Scholar
  43. Solomonow M, Baratta R, Shoji H, D’Ambrosia R (1990) The EMG-force relationships of skeletal muscle; dependence on contraction rate, and motor units control strategy. Electromyogr Clin Neurophysiol 30:141–152PubMedGoogle Scholar
  44. Sutherland DH (2001) The evolution of clinical gait analysis part I: kinesiological EMG. Gait Posture 14:61–70. doi: 10.1016/S0966-6362(01)00100-X PubMedCrossRefGoogle Scholar
  45. Thorstensson A, Carlson H, Zomlefer MR, Nilsson J (1982) Lumbar back muscle activity in relation to trunk movements during locomotion in man. Acta Physiol Scand 116:13–20PubMedCrossRefGoogle Scholar
  46. Troje NF (2002) Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J Vis 2:371–387. doi: 10.1167/2.5.2 PubMedCrossRefGoogle Scholar
  47. Valerius KP, Frank A, Kolster BC, Hirsch MC, Hamilton C, Lafont EA (2002) Das Muskelbuch. Funktionelle Darstellung der Muskeln des Bewegungsapparates. Hippokrates, StuttgartGoogle Scholar
  48. van Dieen JH, Cholewicki J, Radebold A (2003) Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine 28:834–841. doi: 10.1097/00007632-200304150-00018 PubMedCrossRefGoogle Scholar
  49. Waters RL, Morris JM (1972) Electrical activity of muscles of the trunk during walking. J Anat 111:191–199PubMedGoogle Scholar
  50. Winter DA, Yack HJ (1987) EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol 67:402–411. doi: 10.1016/0013-4694(87)90003-4 PubMedCrossRefGoogle Scholar
  51. Winters JM, Crago PE (2000) Biomechanics and neural control of posture and movement. Springer, New YorkGoogle Scholar
  52. Yang JF, Winter DA (1983) Electromyography reliability in maximal and submaximal isometric contractions. Arch Phys Med Rehabil 64:417–420PubMedGoogle Scholar
  53. Yang JF, Winter DA (1984) Electromyographic amplitude normalization methods: improving their sensitivity as diagnostic tools in gait analysis. Arch Phys Med Rehabil 65:517–521PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • C. Anders
    • 1
    Email author
  • H. Wagner
    • 2
  • C. Puta
    • 3
  • R. Grassme
    • 1
    • 4
  • H. C. Scholle
    • 1
  1. 1.Clinic for Trauma-, Hand- and Reconstructive Surgery, Division for Motor Research, Pathophysiology and Biomechanics, University HospitalFriedrich-Schiller-University JenaJenaGermany
  2. 2.Department of Motion Science, Institute of Sport ScienceWestfälische Wilhelms-Universtität MünsterMünsterGermany
  3. 3.Chair for Sports Medicine, Institute for Sports SciencesFriedrich-Schiller-University JenaJenaGermany
  4. 4.Berufsgenossenschaft Nahrungsmittel & Gaststätten (BGN)Aussenstelle ErfurtErfurtGermany

Personalised recommendations