The effects of beta-alanine supplementation and high-intensity interval training on neuromuscular fatigue and muscle function

  • Abbie E. Smith
  • Jordan R. Moon
  • Kristina L. Kendall
  • Jennifer L. Graef
  • Christopher M. Lockwood
  • Ashley A. Walter
  • Travis W. Beck
  • Joel T. Cramer
  • Jeffrey R. Stout
Original Article

Abstract

The purpose of this study was to determine the effects of beta-alanine supplementation and high-intensity interval training (HIIT) on electromyographic fatigue threshold (EMGFT) and efficiency of electrical activity (EEA). A total of 46 men completed four, 2-min work bouts on a cycle ergometer. Using bipolar surface electrodes, the EMG amplitude was averaged and plotted over the 2-min. The resulting slopes were used to calculate EMGFT and EEA. Following initial testing, all participants were randomly assigned to either placebo (PL; n = 18), beta-alanine (BA; n = 18) or control groups (CON; n = 10). Following randomization, participants engaged in 6 weeks of HIIT training. Significant improvements in EMGFT and EEA resulted for both training groups. In conclusion, HIIT appeared to be the primary stimulus effecting EMGFT or EEA, suggesting adaptations from HIIT may be more influential than increasing skeletal muscle carnosine levels on delaying fatigue in recreationally active men.

Keywords

Nutritional supplements Neuromuscular fatigue Muscle buffering capacity Training 

References

  1. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332. doi:10.1152/physrev.00015.2007 PubMedCrossRefGoogle Scholar
  2. Bakardjiev A, Bauer K (1994) Transport of beta-alanine and biosynthesis of carnosine by skeletal muscle cells in primary culture. Eur J Biochem 225:617–623. doi:10.1111/j.1432-1033.1994.00617.x PubMedCrossRefGoogle Scholar
  3. Batrukova MA, Rubtsov AM (1997) Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic reticulum Ca-release channels. Biochim Biophys Acta 1324:142–150. doi:10.1016/S0005-2736(96)00216-7 PubMedCrossRefGoogle Scholar
  4. Bishop D, Edge J, Goodman C (2004) Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol 92:540–547. doi:10.1007/s00421-004-1150-1 PubMedCrossRefGoogle Scholar
  5. Brown L, Greenwood M (2005) Periodization essentials and innovations in resistance training protocols. JSCR 27:80–85Google Scholar
  6. Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E (2007) beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol 103:1736–1743. doi:10.1152/japplphysiol.00397.2007 PubMedCrossRefGoogle Scholar
  7. DeVries HA (1968a) “Efficiency of electrical activity” as a physiological measure of the functional state of muscle tissue. Am J Phys Med 47:10–22PubMedGoogle Scholar
  8. DeVries HA (1968b) Method for evaluation of muscle fatigue and endurance from electromyographic fatigue curves. Am J Phys Med 47:125–135PubMedGoogle Scholar
  9. deVries HA, Moritani T, Nagata A, Magnussen K (1982) The relation between critical power and neuromuscular fatigue as estimated from electromyographic data. Ergonomics 25:783–791PubMedCrossRefGoogle Scholar
  10. Dunnett M, Harris RC, Soliman MZ, Suwar AA (1997) Carnosine, anserine and taurine contents in individual fibres from the middle gluteal muscle of the camel. Res Vet Sci 62:213–216PubMedCrossRefGoogle Scholar
  11. Edge J, Bishop D, Goodman C (2006) The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol 96:97–105PubMedCrossRefGoogle Scholar
  12. Harmer AR, McKenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, Thompson MW, Mackay NA, Stathis CG, Crameri RM, Carey MF, Eager DM (2000) Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. J Appl Physiol 89:1793–1803PubMedGoogle Scholar
  13. Harris RC, Marlin DJ, Dunnett M, Snow DH, Hultman E (1990) Muscle buffering capacity and dipeptide content in the thoroughbred horse, greyhound dog and man. Comp Biochem Physiol A 97:249–251PubMedCrossRefGoogle Scholar
  14. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30:279–289PubMedCrossRefGoogle Scholar
  15. Harris RC, Kendrick IP, Kim CK, Hyojeong K, Dang VH, Lam TQ, Bui TT, Wise JA (2007) The effect of physical training on the carnosine content of V Lateralis using a one-leg training model. Med Sci Sports Exerc 39:S91Google Scholar
  16. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007) Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 32:225–233PubMedCrossRefGoogle Scholar
  17. Hoffman J, Ratamess N, Faigenbaum A, Ross R, Kang J, Stout J, Wise JA (2007) Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr Res 28:31–35CrossRefGoogle Scholar
  18. Housh TJ, Devries HA, Housh DJ, Tichy MW, Smyth KD, Tichy AM (1991) The relationship between critical power and the onset of blood lactate accumulation. J Sports Med Phys Fitness 31:31–36PubMedGoogle Scholar
  19. Juel C (2008) Regulation of pH in human skeletal muscle: adaptations to physical activity. Acta Physiol (Oxf) 193:17–24CrossRefGoogle Scholar
  20. Kim CK, Kim HJ, Lee YW, Harris RC, Sale C, Harris BD, Wise JA (2007) Combined training and B-alanine supplementation—muscle carnosine synthesis, ventilatory threshold and exercise capacity in cyclists. Med Sci Sports Exerc 39:S364Google Scholar
  21. Lamont C, Miller DJ (1992) Calcium sensitizing action of carnosine and other endogenous imidazoles in chemically skinned striated muscle. J Physiol 454:421–434PubMedGoogle Scholar
  22. Maestu J, Cicchella A, Purge P, Ruosi S, Jurimae J, Jurimae T (2006) Electromyographic and neuromuscular fatigue thresholds as concepts of fatigue. J Strength Cond Res 20:824–828PubMedCrossRefGoogle Scholar
  23. Matsumoto T, Ito K, Moritani T (1991) The relationship between anaerobic threshold and electromyographic fatigue threshold in college women. Eur J Appl Physiol Occup Physiol 63:1–5PubMedCrossRefGoogle Scholar
  24. McClaren DP, Gibson H, Parry-Billings M, Edwards RHT (1989) A review of metabolic and physiological factors in fatigue. Exerc Sport Sci Rev 17:29–68Google Scholar
  25. McKenna MJ (1992) The roles of ionic processes in muscular fatigue during intense exercise. Sports Med 13:134–145PubMedCrossRefGoogle Scholar
  26. Moritani T, Muro M, Nagata A (1986) Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol 60:1179–1185PubMedGoogle Scholar
  27. Moritani T, Takaishi T, Matsumoto T (1993) Determination of maximal power output at neuromuscular fatigue threshold. J Appl Physiol 74:1729–1734PubMedGoogle Scholar
  28. Mortimer JT, Magnusson R, Petersen I (1970) Conduction velocity in ischemic muscle: effect on EMG frequency spectrum. Am J Physiol 219:1324–1329PubMedGoogle Scholar
  29. Pavlat DJ, Housh TJ, Johnson GO, Schmidt RJ, Eckerson JM (1993) An examination of the electromyographic fatigue threshold test. Eur J Appl Physiol Occup Physiol 67:305–308PubMedCrossRefGoogle Scholar
  30. Pedersen TH, Nielsen OB, Lamb GD, Stephenson DG (2004) Intracellular acidosis enhances the excitability of working muscle. Science 305:1144–1147PubMedCrossRefGoogle Scholar
  31. Pilegaard H, Domino K, Noland T, Juel C, Hellsten Y, Halestrap AP, Bangsbo J (1999) Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am J Physiol 276:E255–E261PubMedGoogle Scholar
  32. Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287:R502–R516PubMedGoogle Scholar
  33. Stathis CG, Febbraio MA, Carey MF, Snow RJ (1994) Influence of sprint training on human skeletal muscle purine nucleotide metabolism. J Appl Physiol 76:1802–1809PubMedGoogle Scholar
  34. Stout JR, Cramer JT, Mielke M, O’Kroy J, Torok DJ, Zoeller RF (2006) Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J Strength Cond Res 20:928–931PubMedCrossRefGoogle Scholar
  35. Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris RC, O’Kroy J (2007) Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 32:381–386PubMedCrossRefGoogle Scholar
  36. Suzuki Y, Ito O, Takahashi H, Takamatsu K (2004) The effect of sprint training on skeletal muscle carnosine in humans. Int J Sport Health Sci 2:105–110Google Scholar
  37. Taylor AD, Bronks R, Bryant AL (1997) The relationship between electromyography and work intensity revisited: a brief review with references to lacticacidosis and hyperammonia. Electromyogr Clin Neurophysiol 37:387–398PubMedGoogle Scholar
  38. Westerblad H, Bruton JD, Lannergren J (1997) The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol 500 (Pt 1):193–204Google Scholar
  39. Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA (1997) Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol 75:7–13PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Abbie E. Smith
    • 1
  • Jordan R. Moon
    • 1
  • Kristina L. Kendall
    • 1
  • Jennifer L. Graef
    • 1
  • Christopher M. Lockwood
    • 1
  • Ashley A. Walter
    • 2
  • Travis W. Beck
    • 2
  • Joel T. Cramer
    • 2
  • Jeffrey R. Stout
    • 1
  1. 1.Metabolic and Body Composition Laboratory, Department of Health and Exercise ScienceUniversity of OklahomaNormanUSA
  2. 2.Biophysics Laboratory, Department of Health and Exercise ScienceUniversity of OklahomaNormanUSA

Personalised recommendations