European Journal of Applied Physiology

, Volume 105, Issue 3, pp 343–349 | Cite as

The stress of chess players as a model to study the effects of psychological stimuli on physiological responses: an example of substrate oxidation and heart rate variability in man

  • Nicolas Troubat
  • Marie-Agnes Fargeas-Gluck
  • Mikko Tulppo
  • Benoit Dugué
Original Article


We have studied the physiological consequences of the tension caused by playing chess in 20 male chess players, by following heart rate, heart rate variability, and respiratory variables. We observed significant increase in the heart rate (75–86 beats/min), in the ratio low frequency (LF)/high frequency (HF) of heart rate variability (1.3–3.0) and also a decrease in mean heart rate variability with no changes in HF throughout the game. These results suggest a stimulation of the sympathetic nervous system with no changes in the parasympathetic system. The respiratory exchange ratio was rather elevated (over 0.89) at the start and significantly decreased during the game (0.75 at the end), indicating that energy expenditure progressively switched from carbohydrate to lipid oxidation. The changes in substrate oxidation and the sympathetic system seem to be due to high cognitive demands and bring new insight into adaptations to mental strain.


Chess Heart rate variability Indirect calorimetry Psychological crossover concept Psychological stress Substrate oxidation 



The study was partly supported by the Chess League of Limousin, France. The authors are very grateful for the volunteers who were all very excited to participate and the League of Limousin that encouraged this research. The Conseil Général de la Vienne is also thanked for inspiring our collaboration with research laboratories of the Oulu region (Finland) and for giving a traveling grant (BD).


  1. Brooks GA, Mercier J (1994) Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol 76:2253–2261PubMedGoogle Scholar
  2. Brehm MA, Harlaar J, Groepenhof H (2004) Validation of the portable VmaxST system for oxygen-uptake measurement. Gait Posture 20:67–73. doi: 10.1016/S0966-6362(03)00097-3 PubMedCrossRefGoogle Scholar
  3. Carver CS, Scheier MF, Weintraub JK (1989) Assessing coping strategies: a theoretically based approach. J Pers Soc Psychol 56:267–283. doi: 10.1037/0022-3514.56.2.267 PubMedCrossRefGoogle Scholar
  4. Delaney JP, Brodie DA (2000) Effects of short-term psychological stress on the time and frequency domains of heart-rate variability. Percept Mot Skills 91:515–524. doi: 10.2466/PMS.91.6.515-524 PubMedCrossRefGoogle Scholar
  5. Dugué B, Leppänen E, Zhou HP, Gräsbeck R (1992) Preanalytical factors and standardised specimen collection: influence of psychological stress. Scand J Clin Lab Invest 52:43–50. doi: 10.3109/00365519209085439 PubMedCrossRefGoogle Scholar
  6. Dugué B, Leppänen E, Gräsbeck R (2001) The driving license examination as a stress model. Effects on blood picture, serum cortisol and the production of interleukins in man. Life Sci 68:1641–1647. doi: 10.1016/S0024-3205(01)00963-8 PubMedCrossRefGoogle Scholar
  7. Fairclough SH, Houston K (2004) A metabolic measure of mental effort. Biol Psychol 66:177–190. doi: 10.1016/j.biopsycho.2003.10.001 PubMedCrossRefGoogle Scholar
  8. Gaillard AW (1993) Comparing the concepts of mental load and stress. Ergonomics 36:991–1006. doi: 10.1080/00140139308967972 PubMedCrossRefGoogle Scholar
  9. Gaillard AW (2001) Stress, workload, and fatigue as three biobehavioural states: a general overview. In: Hancock PA, Desmond PA (eds) Stress, workload, and fatigue. Erlbaum, Mahweh, NJ, pp 623–639Google Scholar
  10. Garde AH, Laursen B, Jorgensen AH, Jensen BR (2002) Effects of mental and physical demands on heart rate variability during computer work. Eur J Appl Physiol 87:456–461. doi: 10.1007/s00421-002-0656-7 PubMedCrossRefGoogle Scholar
  11. Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S, Fujinami T, Yokoyama K, Watanabe Y, Takata K (1991) Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol 67:199–204. doi: 10.1016/0002-9149(91)90445-Q PubMedCrossRefGoogle Scholar
  12. Hirsch JA, Bishop B (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol 241:H620–H629PubMedGoogle Scholar
  13. Huikuri HV, Linnaluoto MK, Seppänen T, Airaksinen KEJ, Kessler KM, Takkunen JT, Myerburg RJ (1992) Circadian rhythm of heart rate variability in survivors of cardiac arrest. Am J Cardiol 70:610–615. doi: 10.1016/0002-9149(92)90200-I PubMedCrossRefGoogle Scholar
  14. Huikuri HV, Seppänen T, Koistinen MJ, Airaksinen KEJ, Ikäheimo MJ, Castellanos A, Myerburg RJ (1996) Abnormalities in beat-to-beat dynamics of heart rate before the spontaneous onset of life-threatening ventricular tachyarrhythmias in patients with prior myocardial infarction. Circulation 93:1836–1844PubMedGoogle Scholar
  15. Laurent CM, Meyers MC, Robinson CA, Strong LR, Chase C, Goodwin B (2008) Validity of the VmaxST portable metabolic measurement system. J Sports Sci 26:709–716. doi: 10.1080/02640410701758685 PubMedCrossRefGoogle Scholar
  16. Levine JA, Schleusner SJ, Jensen MD (2000) Energy expenditure of nonexercise activity. Am J Clin Nutr 72:1451–1454PubMedGoogle Scholar
  17. Levine JA (2005) Measurement of energy expenditure. Public Health Nutr 8:1123–1132. doi: 10.1079/PHN2005800 PubMedCrossRefGoogle Scholar
  18. McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15. doi: 10.1016/S0018-506X(02)00024-7 PubMedCrossRefGoogle Scholar
  19. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90:1826–1831PubMedGoogle Scholar
  20. Mourot L, Bouhaddi M, Gandelin E, Cappelle S, Nguyen NU, Wolf JP, Rouillon JD, Hughson R, Regnard J (2007) Conditions of autonomic reciprocal interplay versus autonomic co-activation: effects on non-linear heart rate dynamics. Auton Neurosci 137:27–36. doi: 10.1016/j.autneu.2007.06.284 PubMedCrossRefGoogle Scholar
  21. Niaura R, Stoney CM, Herbert PN (1992) Lipids in psychological research: the last decade. Biol Psychol 34:1–43. doi: 10.1016/0301-0511(92)90022-M PubMedCrossRefGoogle Scholar
  22. Pagani M, Rimoldi O, Pizzinelli P, Furlan R, Crivellaro W, Liberati D, Cerutti S, Malliani A (1991) Assessment of the neural control of the circulation during psychological stress. J Auton Nerv Syst 35:33–41. doi: 10.1016/0165-1838(91)90036-3 PubMedCrossRefGoogle Scholar
  23. Peronnet F, Massicotte D (1991) Table of non protein respiratory quotient: an update. Can J Sport Sci 16:23–29PubMedGoogle Scholar
  24. Rao J, Oz G, Seaquist ER (2006) Regulation of cerebral glucose metabolism. Minerva Endocrinol 31:149–158PubMedGoogle Scholar
  25. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265:E380–E391PubMedGoogle Scholar
  26. Ruha A, Sallinen S, Nissilä S (1997) A real-time microprocessor QRS detector system with a 1 ms timing accuracy for the measurement of ambulatory HRV. IEEE Trans Biomed Eng 44:159–167. doi: 10.1109/10.554762 PubMedCrossRefGoogle Scholar
  27. Schwarz AM, Schachinger H, Adler RH, Goetz SM (2003) Hopelessness is associated with decreased heart rate variability during championship chess games. Psychosom Med 65:658–661. doi: 10.1097/01.PSY.0000075975.90979.2A PubMedCrossRefGoogle Scholar
  28. Seematter G, Guenat E, Schneiter P, Cayeux C, Jequier E, Tappy L (2000) Effects of mental stress on insulin-mediated glucose metabolism and energy expenditure in lean and obese women. Am J Physiol Endocrinol Metab 279:E799–E805PubMedGoogle Scholar
  29. Selye H (1951) The general adaptation syndrome and the diseases of adaptation. Am J Med 10:549–555. doi: 10.1016/0002-9343(51)90327-0 PubMedCrossRefGoogle Scholar
  30. Sourkes TL (2006) On the energy cost of mental effort. J Hist Neurosci 15:31–47. doi: 10.1080/096470490944860 PubMedCrossRefGoogle Scholar
  31. Stoney CM, Niaura R, Bausserman L (1997) Temporal stability of lipid responses to acute psychological stress in middle-aged men. Psychophysiology 34:285–291. doi: 10.1111/j.1469-8986.1997.tb02399.x PubMedCrossRefGoogle Scholar
  32. Stoney CM, Niaura R, Bausserman L, Matacin M (1999) Lipid reactivity to stress: comparison of chronic and acute stress responses in middle-aged airline pilots. Health Psychol 18:241–250. doi: 10.1037/0278-6133.18.3.241 PubMedCrossRefGoogle Scholar
  33. Tulppo MP, Kiviniemi AM, Hautala AJ, Kallio M, Seppänen T, Mäkikallio TH, Huikuri HV (2005) Physiological background of the loss of fractal heart rate dynamics. Circulation 112:314–319. doi: 10.1161/CIRCULATIONAHA.104.523712 PubMedCrossRefGoogle Scholar
  34. Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 54:1063–1070. doi: 10.1037/0022-3514.54.6.1063 PubMedCrossRefGoogle Scholar
  35. Wirtz PH, Ehlert U, Emini L, Rüdisüli K, Groessbauer S, Gaab J, Elsenbruch S, Von Känel R (2006) Anticipatory cognitive stress appraisal and the acute procoagulant stress response in men. Psychosom Med 68:851–858. doi: 10.1097/01.psy.0000245866.03456.aa PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nicolas Troubat
    • 1
  • Marie-Agnes Fargeas-Gluck
    • 1
    • 2
  • Mikko Tulppo
    • 3
  • Benoit Dugué
    • 1
  1. 1.UFR Sciences du Sport de l’Université de Poitiers et Laboratoire des Adaptations, Physiologiques aux Activités Physiques (EA 3813)PoitiersFrance
  2. 2.Department of Sport SciencesUniversity of LimogesLimogesFrance
  3. 3.Department of Physical RehabilitationVerveOuluFinland

Personalised recommendations