European Journal of Applied Physiology

, Volume 105, Issue 2, pp 289–296 | Cite as

Prediction of VO2max with daily step counts for Japanese adult women

  • Zhen-Bo Cao
  • Nobuyuki Miyatake
  • Mitsuru Higuchi
  • Kazuko Ishikawa-Takata
  • Motohiko Miyachi
  • Izumi Tabata
Original Article

Abstract

The purpose of the study was to develop a new non-exercise VO2max prediction model using a physical activity (PA) variable determined by pedometer-determined step counts (SC, steps day−1) in Japanese women aged 20–69 years old. Eighty-seven and 102 subjects were used to develop the prediction model, and to validate the new model, respectively. VO2max was measured using a maximal incremental test on a bicycle ergometer. SC was significantly related to VO2max (partial correlation coefficient r = 0.40, P < 0.001) after adjusting for BMI (kg m−2) and age (years). When the new prediction equation developed by multiple regression to estimate VO2max from age, BMI, and SC (R = 0.71, SEE = 5.3 ml kg−1 min−1, P < 0.001) was applied to the Validation group, predicted VO2max correlated well with measured VO2max (r = 0.81, P < 0.001), suggesting that SC is a useful PA variable for non-exercise prediction of VO2max in Japanese women.

Keywords

Cardiorespiratory fitness Maximal oxygen uptake Pedometer Prediction model Physical activity Female 

References

  1. Aadahl M, Kjaer M, Kristensen JH, Mollerup B, Jørgensen T (2007) Self-reported physical activity compared with maximal oxygen uptake in adults. Eur J Cardiovasc Prev Rehabil 14:422–428. doi:10.1097/HJR.0b013e3280128d00 PubMedCrossRefGoogle Scholar
  2. Akalan C, Robergs RA, Kravitz L (2008) Prediction of VO2max from an individualized submaximal cycle ergometer protocol. JEPonline 11(2):1–17Google Scholar
  3. American College of Sports Medicine (2006) ACSM’s guidelines for exercise testing and prescription, 7th edn. Williams & Wilkins, BaltimoreGoogle Scholar
  4. Bassett DR Jr, Cureton AL, Ainsworth BE (2000) Measurement of daily walking distance-questionnaire versus pedometer. Med Sci Sports Exerc 32:1018–1023. doi:10.1097/00005768-200005000-00021 PubMedCrossRefGoogle Scholar
  5. Bertoli A, Di Daniele N, Ceccobelli M, Ficara A, Girasoli C, De Lorenzo A (2003) Lipid profile BMI, body fat distribution, and aerobic fitness in men with metabolic syndrome. Acta Diabetol 40:S130–S133. doi:10.1007/s00592-003-0045-7 PubMedCrossRefGoogle Scholar
  6. Bjørgaas M, Vik JT, Saeterhaug A, Langlo L, Sakshaug T, Mohus RM, Grill V (2005) Relationship between pedometer-registered activity, aerobic capacity and self-reported activity and fitness in patients with type 2 diabetes. Diabetes Obes Metab 7:737–744. doi:10.1111/j.1463-1326.2004.00464.x PubMedCrossRefGoogle Scholar
  7. Blair SN, Kannel WB, Kohl HW, Goodyear N, Wilson PW (1989) Surrogate measures of physical activity and physical fitness. Evidence for sedentary traits of resting tachycardia, obesity, and low vital capacity. Am J Epidemiol 129:1145–1156PubMedGoogle Scholar
  8. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedGoogle Scholar
  9. Centers for Disease Control and Prevention, National Center for Health Statistics (2004) National Health and Nutrition Examination Survey 2003–2004. Laboratory procedures manual. US Department of Health and Human Services, Centers for Disease Control and Prevention. Hyattsville, MD. p 16-2. http://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/lab_pm.pdf. Cited 3 May 2008
  10. Crouter SE, Schneider PL, Karabulut M, Bassett DR Jr (2003) Validity of 10 electronic pedometers for measuring steps, distance and energy cost. Med Sci Sports Exerc 35:1455–1460. doi:10.1249/01.MSS.0000078932.61440.A2 PubMedCrossRefGoogle Scholar
  11. Evenson KR, Stevens J, Cai J, Thomas R, Thomas O (2003) The effect of cardiorespiratory fitness and obesity on cancer mortality in women and men. Med Sci Sports Exerc 35:270–277. doi:10.1249/01.MSS.0000053511.02356.72 PubMedCrossRefGoogle Scholar
  12. Fang ZY, Sharman J, Prins JB, Marwick TH (2005) Determinants of exercise capacity in patients with type 2 diabetes. Diabetes Care 28:1643–1648. doi:10.2337/diacare.28.7.1643 PubMedCrossRefGoogle Scholar
  13. Fox EL (1973) A simple, accurate technique for predicting maximal aerobic power. J Appl Physiol 35(6):914–916PubMedGoogle Scholar
  14. George JD, Stone WJ, Burkett LN (1997) Non-exercise VO2max estimation for physically active college students. Med Sci Sports Exerc 29:415–423. doi:10.1097/00005768-199703000-00019 PubMedGoogle Scholar
  15. Haskell WL, Leon AS, Caspersen CJ, Froelicher VF, Hagberg JM, Harlan W, Holloszy JO, Regensteiner JG, Thompson PD, Washburn RA et al (1992) Cardiovascular benefits and assessment of physical activity and physical fitness in adults. Med Sci Sports Exerc 24:S201–S220. doi:10.1249/00005768-199206001-00004 PubMedGoogle Scholar
  16. Heil DP, Freedson PS, Ahlquist LE, Price J, Rippe JM (1995) Nonexercise regression models to estimate peak oxygen consumption. Med Sci Sprts Exerc 27:599–606Google Scholar
  17. Hermiston RT, Faulkner JA (1971) Prediction of maximal oxygen uptake by a stepwise regression technique. J Appl Physiol 30(6):833–837PubMedGoogle Scholar
  18. Holiday DB, Ballard JE, McKeown BC (1995) PRESS-related statistics: regression tools for cross-validation and case diagnostics. Med Sci Sports Exerc 27(4):612–620. doi:10.1249/00005768-199504000-00022 PubMedGoogle Scholar
  19. Ichihara Y, Hattori R, Anno T, Okuma K, Yokoi M, Mizuno Y, Iwatsuka T, Ohta T, Kawamura T (1996) Oxygen uptake and its relation to physical activity and other coronary risk factors in asymptomatic middle-aged Japanese. J Cardiopulm Rehabil 16:378–385. doi:10.1097/00008483-199611000-00007 PubMedCrossRefGoogle Scholar
  20. Jackson AS, Blair SN, Mahar MT, Weir LT, Rossand RM, Stuteville JE (1990) Prediction of functional aerobic capacity without exercise testing. Med Sci Sports Exerc 22:863–870. doi:10.1249/00005768-199012000-00021 PubMedGoogle Scholar
  21. Jurca R, Jackson AS, LaMonte MJ, Morrow JR Jr, Blair SN, Wareham NJ, Haskell WL, van Mechelen W, Church TS, Jakicic JM, Laukkanen R (2005) Assessing cardiorespiratory fitness without performing exercise testing. Am J Prev Med 29(3):185–193. doi:10.1016/j.amepre.2005.06.004 PubMedCrossRefGoogle Scholar
  22. Kohl HW, Blair SN, Paffenbarger RS Jr, Macera CA, Kronenfeld JJ (1988) A mail survey of physical activity habits as related to measured physical fitness. Am J Epidemiol 127:1228–1239PubMedGoogle Scholar
  23. Malek MH, Housh TJ, Berger DE, Coburn JW, Beck TW (2004a) A new non-exercise based VO2max equation for aerobically trained females. Med Sci Sports Exerc 36:1804–1810. doi:10.1249/01.MSS.0000142299.42797.83 PubMedCrossRefGoogle Scholar
  24. Malek MH, Berger DE, Housh TJ, Coburn JW, Beck TW (2004b) Validity of VO2max equations for aerobically trained males and females. Med Sci Sports Exerc 36:1427–1432. doi:10.1249/01.MSS.0000135795.60449.CE PubMedCrossRefGoogle Scholar
  25. Michaud PA, Cauderay M, Narring F, Schutz Y (2002) Assessment of physical activity with a pedometer and its relationship with VO2max among adolescents in Switzerland. Soz Praventivmed 47:107–115. doi:10.1007/BF01318392 PubMedCrossRefGoogle Scholar
  26. Ministry of Health and Welfare Japan (2002) The National Nutrition Survey in Japan, 2002 [in Japanese]. Daiichi-Shuppan pp. 115–116Google Scholar
  27. Ministry of Health Labour and Welfare Japan (2007) Exercise and physical activity reference for health promotion 2006. pp 9–10. http://www.nih.go.jp/eiken/programs/pdf/epar2006.pdf. Cited 3 Mar 2008
  28. Miyachi M, Tanaka H, Yamamoto K, Yoshioka A, Takahashi K, Onodera S (2001) Effects of one-legged endurance training on femoral arterial and venous size in healthy humans. J Appl Physiol 90:2439–2444PubMedGoogle Scholar
  29. Plasqui G, Westerterp KR (2005) Accelerometry and heart rate as a measure of physical fitness: proof of concept. Med Sci Sports Exerc 37:872–876. doi:10.1249/01.MSS.0000161805.61893.C0 PubMedCrossRefGoogle Scholar
  30. Plasqui G, Westerterp KR (2006) Accelerometry and heart rate as a measure of physical fitness: cross-validation. Med Sci Sports Exerc 38:1510–1514. doi:10.1249/01.mss.0000228942.55152.84 PubMedCrossRefGoogle Scholar
  31. Rankin SL, Briffa TG, Morton AR, Hung J (1996) A specific activity questionnaire to measure the functional capacity of cardiac patients. Am J Cardiol 77:1220–1223. doi:10.1016/S0002-9149(97)89157-6 PubMedCrossRefGoogle Scholar
  32. Sanada K, Midorikawa T, Yasuda T, Kearns CF, Abe T (2007) Development of nonexercise prediction models of maximal oxygen uptake in healthy Japanese young men. Eur J Appl Physiol 99:143–148. doi:10.1007/s00421-006-0325-3 PubMedCrossRefGoogle Scholar
  33. Schneider PL, Crouter SE, Bassett DR Jr (2004) Pedometer measures of free-living physical activity: comparison of 13 models. Med Sci Sports Exerc 36:331–335. doi:10.1249/01.MSS.0000113486.60548.E9 PubMedCrossRefGoogle Scholar
  34. Siconolfi SF, Lasater TM, Snow RC, Carleton RA (1985) Self-reported physical activity compared with maximal oxygen uptake. Am J Epidemiol 122:101–105PubMedGoogle Scholar
  35. Sui X, LaMonte MJ, Laditka JN, Hardin JW, Chase N, Hooker SP, Blair SN (2007) Cardiorespiratory fitness and adiposity as mortality predictors in older adults. JAMA 298:2507–2516. doi:10.1001/jama.298.21.2507 PubMedCrossRefGoogle Scholar
  36. Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K (1996) Effects of moderate intensity-endurance and high intensity-intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28:1327–1330. doi:10.1097/00005768-199610000-00018 PubMedGoogle Scholar
  37. Tudor-Locke C (2001) A preliminary study to determine instrument responsiveness to change with a walking program: physical activity logs versus pedometers. Res Q Exerc Sport 72:288–292PubMedGoogle Scholar
  38. Tudor-Locke M, Myers A (2001) Challenges and opportunities for measuring physical activity in sedentary adults. Sports Med 31:91–100. doi:10.2165/00007256-200131020-00002 PubMedCrossRefGoogle Scholar
  39. Tudor-Locke C, Ham SA, Macera CA, Ainsworth BE, Kirtland KA, Reis JP, Kimsey CD Jr (2004a) Descriptive epidemiology of pedometer-determined physical activity. Med Sci Sports Exerc 36:1567–1573. doi:10.1249/01.MSS.0000139806.53824.2E PubMedCrossRefGoogle Scholar
  40. Tudor-Locke C, Williams JE, Reis JP, Pluto D (2004b) Utility of pedometers for assessing physical activity: construct validity. Sports Med 34:281–291. doi:10.2165/00007256-200434050-00001 PubMedCrossRefGoogle Scholar
  41. Wei M, Kampert JB, Barlow CE, Nichaman MZ, Gibbons LW, Paffenbarger RS Jr, Blair SN (1999) Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA 282:1547–1553. doi:10.1001/jama.282.16.1547 PubMedCrossRefGoogle Scholar
  42. Welk G, Differding J, Thompson R, Blair S, Dzuira J, Hart P (2000) The utility of the Digi-Walker step-counter to assess daily physical activity patterns. Med Sci Sports Exerc 32:S481–S488. doi:10.1097/00005768-200009001-00007 PubMedCrossRefGoogle Scholar
  43. Whaley MH, Kaminsky LA, Dwyer GB, Getchell LH (1995) Failure of predicted VO2peak to discriminate physical fitness in epidemiological studies. Med Sci Sports Exerc 27:85–91PubMedGoogle Scholar
  44. Wier LT, Jackson AS, Ayers GW, Arenare B (2006) Nonexercise models for estimating VO2max with waist girth, percent fat, or BMI. Med Sci Sports Exerc 38:555–561. doi:10.1249/01.mss.0000193561.64152 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Zhen-Bo Cao
    • 1
  • Nobuyuki Miyatake
    • 2
  • Mitsuru Higuchi
    • 3
  • Kazuko Ishikawa-Takata
    • 1
  • Motohiko Miyachi
    • 1
  • Izumi Tabata
    • 1
  1. 1.Health Promotion and Exercise ProgramNational Institute of Health and NutritionShinjukuJapan
  2. 2.Okayama Southern Institute of HealthOkayama Health FoundationOkayamaJapan
  3. 3.Faculty of Sport SciencesWaseda UniversityTokorozawaJapan

Personalised recommendations