Advertisement

Effect of strength training session on plasma amino acid concentration following oral ingestion of leucine, BCAAs or glutamine in men

  • Antti MeroEmail author
  • Anne Leikas
  • Juha Knuutinen
  • Juha J. Hulmi
  • Vuokko Kovanen
Original Article

Abstract

We examined the acute effects of a 1-h strength training session (STS) on plasma amino acid concentration following orally ingestion of leucine, branched-chain amino acids (BCAAs) or glutamine in nine physically active men who participated in double-blinded and randomised experiments. The subjects took placebo, leucine, BCAAs, or glutamine capsules (50 mg/kg) in either rest (REST) or STS condition. Blood samples were taken before and at 30, 60, 90, and 120 min after the beginning of the treatment and they were assayed for plasma amino acids with HPLC. Following both leucine and BCAA ingestion the peak concentration of leucine was similar at rest (524 ± 46 and 530 ± 29 nmol/ml, respectively) and similar after STS (398 ± 43 and 387 ± 46 nmol/ml, respectively) but the rest and STS concentrations differed from each other (P < 0.01–0.001). The modelled polynomial data for the leucine treatment showed that the peak concentration of leucine occurred at 67 min at rest and at 90 min in STS (difference between REST and STS: = 0.012). For the BCAA treatment the polynomial data showed that the peak concentration of leucine occurred at 72 min at rest and at 78 min in STS (= 0.067). The peak concentration of glutamine was similar in both rest and STS condition and occurred at 60 min at rest and at 57 min in STS. In conclusion, 1-h of STS slows the increase in the peak concentration of plasma leucine similarly after oral ingestion of leucine or BCAAs but after oral ingestion of glutamine it has no slowing effect on glutamine concentration.

Keywords

Strength training session Leucine Branched-chain amino acids Glutamine Insulin 

Notes

Acknowledgments

The authors thank Risto Puurtinen, Kaisa-Leena Tulla, Tarja Lyytinen and Aila Ollikainen for their help in data collection and Hannu Tuuri for help in statistical analysis.

References

  1. Anderson KE (1982) Hormones and liver function: peptide hormones and catecholamines. In: Schiff L, Schiff ER (eds) Diseases of the liver. Lippincott, PhiladelphiaGoogle Scholar
  2. Antonio J, Sanders MS, Kalman D, Woodgate D, Street C (2002) The effects of high-dose glutamine ingestion on weight lifting performance. J Str Cond Res 16:157–160. doi:10.1519/1533-4287(2002)016<0157:TEOHDG>2.0.CO;2CrossRefGoogle Scholar
  3. Bilsborough S, Mann N (2006) A review of issues of dietary protein intake in humans. Int J Sport Nutr Exerc Metab 16:129–152PubMedGoogle Scholar
  4. Biolo G, Maggi SP, Williams BD et al (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol Endocrinol Metab 268:E514–E520Google Scholar
  5. Blomstrand E (2006) A role for branched-chain amino acids in reducing central fatigue. J Nutr 136:544S–547SPubMedGoogle Scholar
  6. Campbell B, Kreider RB, Ziegenfuss T et al (2007) International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr 4:8. doi: 10.1186/1550-2783-4-8 PubMedCrossRefGoogle Scholar
  7. Campbell B, Roberts MS, Kerksick C et al (2006) Pharmacokinetics, safety, and effects on exercise performance of l-arginine-ketoglutarate in trained adult men. Nutrition 22:872–881. doi: 10.1016/j.nut.2006.06.003 PubMedCrossRefGoogle Scholar
  8. Castell LM (2003) Glutamine supplementation in vitro and in vivo, in exercise and in immunodepression. Sports Med 33:323–345. doi: 10.2165/00007256-200333050-00001 PubMedCrossRefGoogle Scholar
  9. Collins MA, Hill DW, Cureton KJ et al (1986) Plasma volume change during heavy-resistance weight lifting. Eur J Appl Physiol 55:44–48. doi: 10.1007/BF00422891 CrossRefGoogle Scholar
  10. Dill DB, Costill DLJ (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248PubMedGoogle Scholar
  11. Durham WJ, Miller SL, Yeckel CW et al (2004) Leg glucose and protein metabolism during an acute bout of resistance exercise in humans. J Appl Physiol 97:1379–1386. doi: 10.1152/japplphysiol.00635.2003 PubMedCrossRefGoogle Scholar
  12. Fekkes D (1996) State-of-the-art high-performance liquid chromatographic analysis of amino acids in physiological samples. J Chromatogr B Analyt Technol Biomed Life Sci 682:3–22. doi: 10.1016/0378-4347(96)00057-6 CrossRefGoogle Scholar
  13. Gropper SS, Acosta PB (1991) Effect of simultaneous ingestion of l-amino acids and whole protein on plasma amino acid and urea nitrogen concentrations in humans. J Parenter Enter Nutr 15:48–53. doi: 10.1177/014860719101500148 CrossRefGoogle Scholar
  14. Hall JC, Heel K, McCauley R (1996) Glutamine. Br J Surg 83(3):305–312. doi: 10.1002/bjs.1800830306 PubMedCrossRefGoogle Scholar
  15. Hoffman JR, Falvo MJ (2004) Protein––which is best? J Sport Sci Med 3:118–130Google Scholar
  16. Kerksick C, Campbell B, Taylor L et al (2004) Pharmokinetic profile of time released and non-time released oral arginine. Sport Nutr Rev J 1:1–14Google Scholar
  17. Kraemer WJ, Marchitelli L, Gordon SE et al (1990) Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 69:1442–1450PubMedGoogle Scholar
  18. Kraemer WJ, Häkkinen K (eds) (2002) Strength training for sport. An IOC medical commission publication, Blackwell Science, OxfordGoogle Scholar
  19. Leiper JB, Nicholas CV, Ali A et al (2005) The effect of intermittent high-intensity running on gastric emptying of fluids in man. Med Sci Sports Exerc 37:240–247. doi: 10.1249/01.MSS.0000152730.74596.50 PubMedCrossRefGoogle Scholar
  20. Lemon PW (2000) Beyond the zone: protein needs of active individuals. J Am Coll Nutr 19:513S–521SPubMedGoogle Scholar
  21. May ME, Buse MG (1989) Effects of branched-chain amino acids on protein turnover. Diabetes Metab Rev 5(3):227–245PubMedCrossRefGoogle Scholar
  22. McArdle WD, Katch FI, Katch VL (eds) (2007) Exercise physiology, energy, nutrition and human performance. Lippincott Williams & Wilkins, MarylandGoogle Scholar
  23. McKirnan MD, Gray CG, White FC (1991) Effects of feeding on muscle blood flow during prolonged exercise in miniature swine. J Appl Physiol 70:1097–1104PubMedGoogle Scholar
  24. Mero A, Leikas A, Rinkinen N et al (2008) Effect of strength training session on plasma amino acid concentration following oral ingestion of arginine or taurine in men. Amino Acids 35:99–106. doi: 10.1007/s00726-007-0619-8 PubMedCrossRefGoogle Scholar
  25. Metges CC, el-Khoury AE, Selvaraj AB et al (2000) Kinetics of l-[1–13C]leucine when ingested with free amino acids, unlabelled or intrinsically labelled casein. Am J Physiol Endocrinol Metab 278:1000–1009Google Scholar
  26. Nair KS, Schwartz RG, Welle S (1992) Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Physiol 263(5 Pt 1):E928–E934PubMedGoogle Scholar
  27. Neu J, Shenoy V, Chakrabarti R (1996) Glutamine nutrition and metabolism: where do we go from here? FASEB J 10(8):829–837PubMedGoogle Scholar
  28. Norton LE, Layman DK (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136:533S–S537PubMedGoogle Scholar
  29. Pfeifer R, Karol R, Korpi J et al (1983) Practical application of HPLC to amino acid analysis. Am Lab 15:78–87Google Scholar
  30. Pitkänen H, Mero A, Oja SS et al (2002) Serum amino acid responses to three different exercise sessions in male power athletes. J Sports Med Phys Fitness 42:472–480PubMedGoogle Scholar
  31. Pitkänen H, Nykänen T, Knuutinen J et al (2003) Free amino acid pool and muscle protein balance after resistance exercise. Med Sci Sports Exerc 35:784–794. doi: 10.1249/01.MSS.0000064934.51751.F9 PubMedCrossRefGoogle Scholar
  32. Ploutz-Snyder LL, Convertino VA, Dudley GA (1995) Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume. Am J Physiol Regul Integr Comp Physiol 269:536–543Google Scholar
  33. Rennie MJ, Ahmed A, Khogali SE et al (1996) Glutamine metabolism and transport in skeletal muscle and heart and their clinical relevance. J Nutr 126(4(Suppl.)):1142S–1149SPubMedGoogle Scholar
  34. Rennie MJ, Bohe J, Wolfe RR (2002) Latency, duration and dose–response relationships of amino acid effects on human muscle protein synthesis. J Nutr 132:3225S–3227SPubMedGoogle Scholar
  35. Rennie MJ, Wackerhage H, Spangenburg EE et al (2004) Control of the size of the human muscle mass. Annu Rev Physiol 66:799–828. doi: 10.1146/annurev.physiol.66.052102.134444 PubMedCrossRefGoogle Scholar
  36. Schwarz EL, Roberts WL, Pasquali M (2005) Analysis of plasma amino acids by HPLC with photodiode array and fluorescence detection. Clin Chim Acta 354:83–90. doi: 10.1016/j.cccn.2004.11.016 PubMedCrossRefGoogle Scholar
  37. USDA (2006) National Nutrient Database for Standard Reference, Release 19Google Scholar
  38. Wasa M, Bode BP, Abcouwer SF et al (1996) Glutamine as a regulator of DNA and protein biosynthesis in human solid tumor cell lines. Ann Surg 224(2):189–197. doi: 10.1097/00000658-199608000-00012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Antti Mero
    • 1
    Email author
  • Anne Leikas
    • 1
  • Juha Knuutinen
    • 2
  • Juha J. Hulmi
    • 1
  • Vuokko Kovanen
    • 3
  1. 1.Department of Biology of Physical ActivityUniversity of JyväskyläJyväskyläFinland
  2. 2.Department of ChemistryUniversity of JyväskyläJyväskyläFinland
  3. 3.Department of Health SciencesUniversity of JyväskyläJyväskyläFinland

Personalised recommendations