European Journal of Applied Physiology

, Volume 105, Issue 1, pp 119–130

Estimating body fat in NCAA Division I female athletes: a five-compartment model validation of laboratory methods

  • Jordan R. Moon
  • Joan M. Eckerson
  • Sarah E. Tobkin
  • Abbie E. Smith
  • Christopher M. Lockwood
  • Ashley A. Walter
  • Joel T. Cramer
  • Travis W. Beck
  • Jeffrey R. Stout
Original Article

Abstract

The purpose of the present study was to determine the validity of various laboratory methods for estimating percent body fat (%fat) in NCAA Division I college female athletes (n = 29; 20 ± 1 year). Body composition was assessed via hydrostatic weighing (HW), air displacement plethysmography (ADP), and dual-energy X-ray absorptiometry (DXA), and estimates of %fat derived using 4-compartment (C), 3C, and 2C models were compared to a criterion 5C model that included bone mineral content, body volume (BV), total body water, and soft tissue mineral. The Wang-4C and the Siri-3C models produced nearly identical values compared to the 5C model (r > 0.99, total error (TE) < 0.40%fat). For the remaining laboratory methods, constant error values (CE) ranged from −0.04%fat (HW-Siri) to −3.71%fat (DXA); r values ranged from 0.89 (ADP-Siri, ADP-Brozek) to 0.93 (DXA); standard error of estimate values ranged from 1.78%fat (DXA) to 2.19%fat (ADP-Siri, ADP-Brozek); and TE values ranged from 2.22%fat (HW-Brozek) to 4.90%fat (DXA). The limits of agreement for DXA (−10.10 to 2.68%fat) were the largest with a significant trend of −0.43 (P < 0.05). With the exception of DXA, all of the equations resulted in acceptable TE values (<3.08%fat). However, the results for individual estimates of %fat using the Brozek equation indicated that the 2C models that derived BV from ADP and HW overestimated (5.38, 3.65%) and underestimated (5.19, 4.88%) %fat, respectively. The acceptable TE values for both HW and ADP suggest that these methods are valid for estimating %fat in college female athletes; however, the Wang-4C and Siri-3C models should be used to identify individual estimates of %fat in this population.

Keywords

Air displacement plethysmography Underwater weighing Multi-compartment Dual-energy X-ray absorptiometry 

References

  1. Arngrimsson S, Evans EM, Saunders MJ, Ogburn CL, Lewis RD, Cureton KJ (2000) Validation of body composition estimates in male and female distance runners using estimates from a four-component model. Am J Hum Biol 12:301–314. doi:10.1002/(SICI)1520-6300(200005/06)12:3<301::AID-AJHB1>3.0.CO;2-JPubMedCrossRefGoogle Scholar
  2. Ballard TP, Fafara L, Vukovich MD (2004) Comparison of BOD POD and DXA in female collegiate athletes. Med Sci Sports Exerc 36:731–735. doi:10.1249/01.MSS.0000121943.02489.2B PubMedCrossRefGoogle Scholar
  3. Baumgartner RN, Heymsfield SB, Lichtman S, Wang J, Pierson RN Jr (1991) Body composition in elderly people: effect of criterion estimates on predictive equations. Am J Clin Nutr 53:1345–1353PubMedGoogle Scholar
  4. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedGoogle Scholar
  5. Brozek J, Grande F, Anderson JT, Keys A (1963) Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci 110:113–140. doi:10.1111/j.1749-6632.1963.tb17079.x PubMedCrossRefGoogle Scholar
  6. Bunt JC, Lohman TG, Boileau RA (1989) Impact of total body water fluctuations on estimation of body fat from body density. Med Sci Sports Exerc 21:96–100. doi:10.1249/00005768-198902000-00017 PubMedCrossRefGoogle Scholar
  7. Clasey JL, Kanaley JA, Wideman L, Heymsfield SB, Teates CD, Gutgesell ME, Thorner MO, Hartman ML, Weltman A (1999) Validity of methods of body composition assessment in young and older men and women. J Appl Physiol 86:1728–1738PubMedGoogle Scholar
  8. Economos CD, Nelson ME, Fiatarone MA, Dallal GE, Heymsfield SB, Wang J, Yasumara S, Ma R, Vaswani AN, Russell-Aulet M, Pierson RN (1997) A multi-center comparison of dual energy X-ray absorptiometers: in vivo and in vitro soft tissue measurement. Eur J Clin Nutr 51:312–317. doi:10.1038/sj.ejcn.1600400 PubMedCrossRefGoogle Scholar
  9. Ellis KJ (2000) Human body composition: in vivo methods. Physiol Rev 80:649–680PubMedGoogle Scholar
  10. Fahey TD, Akka L, Rolph R (1975) Body composition and VO2 max of exceptional weight-trained athletes. J Appl Physiol 39:559–561PubMedGoogle Scholar
  11. Fields DA, Wilson GD, Gladden LB, Hunter GR, Pascoe DD, Goran MI (2001) Comparison of the BOD POD with the four-compartment model in adult females. Med Sci Sports Exerc 33:1605–1610. doi:10.1097/00005768-200109000-00026 PubMedCrossRefGoogle Scholar
  12. Friedl KE, DeLuca JP, Marchitelli LJ, Vogel JA (1992) Reliability of body-fat estimations from a four-compartment model by using density, body water, and bone mineral measurements. Am J Clin Nutr 55:764–770PubMedGoogle Scholar
  13. Genton L, Hans D, Kyle UG, Pichard C (2002) Dual-energy X-ray absorptiometry and body composition: differences between devices and comparison with reference methods. Nutrition (Burbank. Los Angeles Cty Calif 18:66–70Google Scholar
  14. Heymsfield SB, Wang J, Heshka S, Kehayias JJ, Pierson RN (1989) Dual-photon absorptiometry: comparison of bone mineral and soft tissue mass measurements in vivo with established methods. Am J Clin Nutr 49:1283–1289PubMedGoogle Scholar
  15. Heymsfield SB, Lohman TG, Wang Z, Going SB (1996) Multicomponent molecular level models of body composition analysis. In: Roche AF, Heymsfield SB, Lohman TG (eds) Human body composition. Human Kinetics, Champaign, pp 129–148Google Scholar
  16. Heyward VH, Wagner DR (2004) Applied Body Composition Assessments. Human Kinetics, ChampaignGoogle Scholar
  17. Keppel G, Wickens TD (2004) Design and Analysis: A Researchers Handbook. Prentice Hall, Upper Saddle RiverGoogle Scholar
  18. Lohman TG (1986) Applicability of body composition techniques and constants for children and youths. Exerc Sport Sci Rev 14:325–357. doi:10.1249/00003677-198600140-00014 PubMedCrossRefGoogle Scholar
  19. Lohman TG, Harris M, Teixeira PJ, Weiss L (2000) Assessing body composition and changes in body composition. Another look at dual-energy X-ray absorptiometry. Ann N Y Acad Sci 904:45–54PubMedCrossRefGoogle Scholar
  20. Matthie J, Zarowitz B, De Lorenzo A, Andreoli A, Katzarski K, Pan G, Withers P (1998) Analytic assessment of the various bioimpedance methods used to estimate body water. J Appl Physiol 84:1801–1816PubMedGoogle Scholar
  21. Minderico CS, Silva AM, Keller K, Branco TL, Martins SS, Palmeira AL, Barata JT, Carnero EA, Rocha PM, Teixeira PJ, Sardinha LB (2007) Usefulness of different techniques for measuring body composition changes during weight loss in overweight and obese women. Br J Nutr 1–10Google Scholar
  22. Moon JR, Hull HR, Tobkin SE, Teramoto M, Karabulut M, Roberts MD, Ryan ED, Kim SJ, Dalbo VJ, Walter AA, Smith AE, Cramer JT, Stout JR (2007) Percent body fat estimations in college women using field and laboratory methods: a three-compartment model approach. J Int Soc Sports Nutr 4:16. doi:10.1186/1550-2783-4-16 PubMedCrossRefGoogle Scholar
  23. Moon JR, Tobkin SE, Roberts MD, Dalbo VJ, Kerksick CM, Bemben MG, Cramer JT, Stout JR (2008) Total body water estimations in healthy men and women using bioimpedance spectroscopy: A deuterium oxide comparison. Nutr Metab (Lond) 5:7. doi:10.1186/1743-7075-5-7 CrossRefGoogle Scholar
  24. Oldroyd B, Smith AH, Truscott JG (2003) Cross-calibration of GE/Lunar pencil and fan-beam dual energy densitometers–bone mineral density and body composition studies. Eur J Clin Nutr 57:977–987. doi:10.1038/sj.ejcn.1601633 PubMedCrossRefGoogle Scholar
  25. Prior BM, Modlesky CM, Evans EM, Sloniger MA, Saunders MJ, Lewis RD, Cureton KJ (2001) Muscularity and the density of the fat-free mass in athletes. J Appl Physiol 90:1523–1531PubMedGoogle Scholar
  26. Sardinha LB, Silva AM, Teixeira PJ (2003) Usefulness of age-adjusted equations to estimate body fat with air displacement Plethysmography in male adolescent athletes. Acta Diabetol 40:51–55. doi:10.1007/s00592-003-0026-x CrossRefGoogle Scholar
  27. Silva AM, Minderico CS, Teixeira PJ, Pietrobelli A, Sardinha LB (2006) Body fat measurement in adolescent athletes: multicompartment molecular model comparison. Eur J Clin Nutr 60:955–964. doi:10.1038/sj.ejcn.1602405 PubMedCrossRefGoogle Scholar
  28. Siri WE (1961) Body composition from fluid spaces and density. Analysis of methods. In: Brozek J, Henschel A (eds) Techniques for Measuring Body Composition. National Academy of Sciences, Washington, DC, pp 223–244Google Scholar
  29. Tylavsky F, Lohman T, Blunt BA, Schoeller DA, Fuerst T, Cauley JA, Nevitt MC, Visser M, Harris TB (2003) QDR 4500A DXA overestimates fat-free mass compared with criterion methods. J Appl Physiol 94:959–965PubMedGoogle Scholar
  30. Van Der Ploeg GE, Withers RT, Laforgia J (2003) Percent body fat via DEXA: comparison with a four-compartment model. J Appl Physiol 94:499–506Google Scholar
  31. Van Loan MD, Withers P, Matthie J, Mayclin PL (1993) Use of bioimpedance spectroscopy to determine extracellular fluid, intracellular fluid, total body water, and fat-free mass. Basic Life Sci 60:67–70PubMedGoogle Scholar
  32. Vescovi JD, Hildebrandt L, Miller W, Hammer R, Spiller A (2002) Evaluation of the BOD POD for estimating percent fat in female college athletes. J Strength Cond Res 16:599–605. doi:10.1519/1533-4287(2002)016<0599:EOTBPF>2.0.CO;2PubMedCrossRefGoogle Scholar
  33. Wang ZM, Deurenberg P, Guo SS, Pietrobelli A, Wang J, Pierson RN Jr, Heymsfield SB (1998) Six-compartment body composition model: inter-method comparisons of total body fat measurement. Int J Obes Relat Metab Disord 22:329–337. doi:10.1038/sj.ijo.0800590 PubMedCrossRefGoogle Scholar
  34. Wang Z, Pi-Sunyer FX, Kotler DP, Wielopolski L, Withers RT, Pierson RN Jr, Heymsfield SB (2002) Multicomponent methods: evaluation of new and traditional soft tissue mineral models by in vivo neutron activation analysis. Am J Clin Nutr 76:968–974PubMedGoogle Scholar
  35. Wang Z, Shen W, Withers RT, Heymsfield SB (2005) Multicomponent molecular-level models of body composition analysis. In: Heymsfield SB, Lohman TG, Wang Z, Going SB (eds) Human body composition. Human Kinetics, Champaign, pp 163–176Google Scholar
  36. Williams JE, Wells JC, Wilson CM, Haroun D, Lucas A, Fewtrell MS (2006) Evaluation of Lunar Prodigy dual-energy X-ray absorptiometry for assessing body composition in healthy persons and patients by comparison with the criterion 4-component model. Am J Clin Nutr 83:1047–1054PubMedGoogle Scholar
  37. Wilmore JH, Vodak PA, Parr RB, Girandola RN, Billing JE (1980) Further simplification of a method for determination of residual lung volume. Med Sci Sports Exerc 12:216–218PubMedGoogle Scholar
  38. Withers RT, LaForgia J, Pillans RK, Shipp NJ, Chatterton BE, Schultz CG, Leaney F (1998) Comparisons of two-, three-, and four-compartment models of body composition analysis in men and women. J Appl Physiol 85:238–245PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jordan R. Moon
    • 1
  • Joan M. Eckerson
    • 3
  • Sarah E. Tobkin
    • 1
  • Abbie E. Smith
    • 1
  • Christopher M. Lockwood
    • 1
  • Ashley A. Walter
    • 2
  • Joel T. Cramer
    • 2
  • Travis W. Beck
    • 2
  • Jeffrey R. Stout
    • 1
  1. 1.Metabolic and Body Composition Laboratories, Department of Health and Exercise ScienceUniversity of OklahomaNormanUSA
  2. 2.Biophysics Laboratory, Department of Health and Exercise ScienceUniversity of OklahomaNormanUSA
  3. 3.Department of Exercise Science and Athletic TrainingCreighton UniversityOmahaUSA

Personalised recommendations