Advertisement

Anaerobic exercise reduces tumor growth, cancer cachexia and increases macrophage and lymphocyte response in Walker 256 tumor-bearing rats

  • Carina de Lima
  • Luciana E. Alves
  • Fabíola Iagher
  • Andressa Franzoi Machado
  • Sandro J. Bonatto
  • Diogo Kuczera
  • Carine Ferreira de Souza
  • Daniele Cristina Pequito
  • Ana Lúcia Muritiba
  • Everson Araújo Nunes
  • Luiz Cláudio FernandesEmail author
Original Article

Abstract

Here, we investigated the effect of jump exercise on tumor growth, cancer cachexia, lymphocyte proliferation and macrophage function in Walker 256 tumor-bearing rats. Male Wistar rats (60 days) were divided into sedentary (C) and exercised (E) groups. Jump training consisted of six sets of 10 jumps in water with overload of 50% of body mass with 1 min of resting, four times per week for 8 weeks. After 6 weeks of training, half of each group was inoculated with 2 × 107 cells of Walker 256 tumor. Sedentary tumor-bearing and exercised tumor-bearing are referred to as T and TE, respectively. Tumor weight in the T group was 25 g. These animals display loss of weight, hypertriacylglycerolemia, hyperlacticidemia, depletion of glycogen stores and increase in PIF expression. Jump exercise (TE) induced a significant lower tumor weight, preserves liver glycogen stores, partly prevented the hypertriacylglycerolemia, hyperlacticidemia and, prevented the fall in body weight and reduced PIF expression. Lymphocyte was increased by tumor burden (T) and was higher by including exercise (TE). The same was observed regarding phagocytosis and lysosomal volume. Anaerobic exercise decreases tumor growth, cancer cachexia and increases innate and adaptative immune function.

Keywords

Cancer Exercise Cachexia Macrophage Lymphocyte Immune system 

References

  1. Aghili M, Farhan F, Rade M (2007) A pilot study of the effects of programmed aerobic exercise on the severity of fatigue in cancer patients during external radiotherapy. Eur J Oncol Nurs 11:179–182. doi: 10.1016/j.ejon.2006.03.005 PubMedCrossRefGoogle Scholar
  2. Argilés JM, Busquets S, Garcia-Martinez C et al (2005) Mediators involved in the cancer anorexia-cachexia syndrome: past, present and future. Nutrition 21:977–985PubMedGoogle Scholar
  3. Bacurau AV, Belmonte MA, Navarro F et al (2007) Effect of a high-intensity exercise on the metabolism and function of macrophages and lymphocytes of Walker 256 tumor-bearing rats. Exp Biol Med 232:1289–1299. doi: 10.3181/0704-RM-93 CrossRefGoogle Scholar
  4. Baar K, Esser K (1999) Phosphorylation of p70(S6 k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276:C120–C127PubMedGoogle Scholar
  5. Bonatto SJR, Folador A, Aikawa J et al (2004) Lifelong exposure to dietary fish oil alters macrophages responses in Walker 256 tumor-bearing rats. Cell Immunol 231:56–62. doi: 10.1016/j.cellimm.2004.12.001 PubMedCrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  7. Burhnam TR, Wilcox A (2002) Effects of exercise on physiological and psychological variables in cancer survivors. Med Sci Sports Exerc 34:1863–1867. doi: 10.1097/00005768-200212000-00001 CrossRefGoogle Scholar
  8. Castell LM (2003) Glutamine supplementation in vitro and in vivo, in exercise and in immunodepression. Sports Med 33:323–345. doi: 10.2165/00007256-200333050-00001 PubMedCrossRefGoogle Scholar
  9. Costa Rosa LF (2004) Exercise as a time-conditioning effector in chronic disease: a complementary treatment strategy. Evid Based Complement Alternat Med 1:63–70. doi: 10.1093/ecam/neh018 PubMedCrossRefGoogle Scholar
  10. Courtneya KS (2003) Exercise in cancer survivors: an overview of research. Med Sci Sports Exerc 35:1846–1852. doi: 10.1249/01.MSS.0000093622.41587.B6 CrossRefGoogle Scholar
  11. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867. doi: 10.1038/nature01322 PubMedCrossRefGoogle Scholar
  12. Edwards KM, Burns VE, Carroll D et al (2007) The acute stress-induced immunoenhancement hypothesis. Exerc Sport Sci Rev 35:150–155. doi: 10.1097/JES.0b013e3180a031bd PubMedCrossRefGoogle Scholar
  13. Eley HL, Tisdale MJ (2007) Skeletal muscle atrophy, a link between depression of protein synthesis and increase in degradation. J Biol Chem 282:7087–7097. doi: 10.1074/jbc.M610378200 PubMedCrossRefGoogle Scholar
  14. Engle PC, Jones JB (1978) Causes and elimination of erratic blanks in enzymatic metabolite assays involving the use of NAD in alkaline hydrazine buffers: improved conditions of l-glutamate, l-lactate and other metabolites. Anal Biochem 88:475–484. doi: 10.1016/0003-2697(78)90447-5 CrossRefGoogle Scholar
  15. Gonzalez MJ, Schemmel RA, Dugan L et al (1993) Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids 28:827–832. doi: 10.1007/BF02536237 PubMedCrossRefGoogle Scholar
  16. Gordon JN, Green SR, Goggin PM (2005) Cancer cachexia. QJM 98:779–788. doi: 10.1093/qjmed/hci127 PubMedCrossRefGoogle Scholar
  17. Gross S, Walden P (2008) Immunosuppressive mechanisms in human tumors: why we still cannot cure cancer. Immunol Lett 116:7–14. doi: 10.1016/j.imlet.2007.11.012 PubMedCrossRefGoogle Scholar
  18. Inui A (2002) Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin 52:72–91PubMedCrossRefGoogle Scholar
  19. Jung DH, Biggs HG, Moorehead WR (1975) Colorimetry of serum cholesterol with use of ferric acetate/uranyl acetate and ferrous sulfate/sulfuric acid reagents. Clin Chem 21:1526–1530PubMedGoogle Scholar
  20. Leighton B, Cooper GJS (1988) Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro. Nature 335:632–635. doi: 10.1038/335632a0 PubMedCrossRefGoogle Scholar
  21. Li G, Yang T, Yan J (2002) Cyclooxygenase-2 increased the angiogenic and metastatic potential of tumor cells. Biochem Biophys Res Commun 299:886–890. doi: 10.1016/S0006-291X(02)02707-9 PubMedCrossRefGoogle Scholar
  22. Khal J, Hine AV, Fearon KCH et al (2005) Increased expression of proteosome subunits in skeletal muscle of cancer patients with weight loss. Int J Biochem Cell Biol 37:2196–2206. doi: 10.1016/j.biocel.2004.10.017 PubMedCrossRefGoogle Scholar
  23. Murphy EA, Davis JM, Brown AS et al (2004) Effects of moderate exercise and oat β-glucan on lung tumor metastases and macrophage antitumor cytotoxicity. J Appl Physiol 97:955–959. doi: 10.1152/japplphysiol.00252.2004 PubMedCrossRefGoogle Scholar
  24. Negus RPM, Balkwill FR (1996) Cytokines in tumor growth, migration and metastasis. World J Urol 14:157–165. doi: 10.1007/BF00186895 PubMedCrossRefGoogle Scholar
  25. Nielsen HB, Pedersen BK (1997) Lymphocyte proliferation in response to exercise. Eur J Appl Physiol Occup Physiol 75:375–379. doi: 10.1007/s004210050175 PubMedCrossRefGoogle Scholar
  26. Nieman DC, Pedersen BK (1999) Exercise and immune function: recent developments. Sports Med 27:73–80. doi: 10.2165/00007256-199927020-00001 PubMedCrossRefGoogle Scholar
  27. Palozza P, Calviello G, Maggiano P et al (2000) Beta-carotene antagonizes the effects of eicosapentaenoic acid on cell growth and lipid peroxidation in WiDr adenocarcinoma cells. Free Radic Biol Med 28:228–234. doi: 10.1016/S0891-5849(99)00225-7 PubMedCrossRefGoogle Scholar
  28. Pedersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–2262. doi: 10.1152/japplphysiol.00164.2004 PubMedCrossRefGoogle Scholar
  29. Pedersen BK, Toft AD (2000) Effects of exercise on lymphocytes and cytokines. Br J Sports Med 34:246–251. doi: 10.1136/bjsm.34.4.246 PubMedCrossRefGoogle Scholar
  30. Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune systems: regulation, integration and adaptation. Physiol Rev 80:1055–1081PubMedGoogle Scholar
  31. Pizato N, Bonatto S, Piconcelli MB et al (2006) Fish oil alters T-lymphocyte proliferation and macrophage responses in Walker 256 tumor-bearing rats. Nutrition 22:425–432. doi: 10.1016/j.nut.2005.11.001 PubMedCrossRefGoogle Scholar
  32. Quist M, Rorth M, Zacho M (2006) High-intensity resistance and cardiovascular training improve physical capacity in cancer patients undergoing chemotherapy. Scand J Med Sci Sports 16:349–357. doi: 10.1111/j.1600-0838.2005.00503.x PubMedCrossRefGoogle Scholar
  33. Scharhag J, Meyer T, Gabriel HHW et al (2005) Does prolonged cycling of moderate intensity affect immune cell function? Br J Sports Med 39:171–177. doi: 10.1136/bjsm.2004.013060 PubMedCrossRefGoogle Scholar
  34. Schrey MP, Patel KV (1995) Prostaglandin E production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators. Br J Cancer 72:1412–1419PubMedGoogle Scholar
  35. Segal RJ, Reid RD, Courneya KS et al (2003) Resistance exercise in men receiving androgen deprivation therapy for prostate cancer. J Clin Oncol 21:1653–1659. doi: 10.1200/JCO.2003.09.534 PubMedCrossRefGoogle Scholar
  36. Skipworth RJE, Stewart GD, Dejong CHC et al (2007) Pathophysiology of cancer cachexia: much more than host–tumor interaction? Clin Nutr 26:667–676. doi: 10.1016/j.clnu.2007.03.011 PubMedCrossRefGoogle Scholar
  37. Spisni E, Manica F, Tomasi V (1992) Involvement of prostanoids in the regulation of angiogenesis by polypopeptide growth factors. Prostate Leukot Essent Fat Acids 47:111–115. doi: 10.1016/0952-3278(92)90146-A CrossRefGoogle Scholar
  38. Tisdale MJ (2000) Metabolic abnormalities in cachexia and anorexia. Nutrition 16:1013–1014. doi: 10.1016/S0899-9007(00)00409-3 PubMedCrossRefGoogle Scholar
  39. Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2:862–871. doi: 10.1038/nrc927 PubMedCrossRefGoogle Scholar
  40. Tisdale MJ (2005) Molecular pathways leading to cancer cachexia. Physiology (Bethesda) 20:340–348. doi: 10.1152/physiol.00019.2005 Google Scholar
  41. Todorov PT, Deacon M, Tisdale MJ (1997) Structural analysis of a tumor-produced sulfated glycoprotein capable of initiating muscle protein degradation. J Biol Chem 272:12279–12288. doi: 10.1074/jbc.272.19.12279 PubMedCrossRefGoogle Scholar
  42. Westerlind KC, Maccarty HL, Schultheiss PC et al (2003) Moderate exercise training slows mammary tumor growth in adolescent rats. Eur J Cancer Prev 12:281–287. doi: 10.1097/00008469-200308000-00007 PubMedCrossRefGoogle Scholar
  43. Wigmore SJ, Fearon KCH, Sangster K et al (2002) Cytokine regulation of constitutive production of interleukin-8 and 6 by human pancreatic cancer cell lines and serum cytokine concentration in patients with pancreatic cancer. Int J Oncol 21:881–886PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Carina de Lima
    • 1
  • Luciana E. Alves
    • 1
  • Fabíola Iagher
    • 2
  • Andressa Franzoi Machado
    • 1
  • Sandro J. Bonatto
    • 1
  • Diogo Kuczera
    • 1
  • Carine Ferreira de Souza
    • 1
  • Daniele Cristina Pequito
    • 1
  • Ana Lúcia Muritiba
    • 1
  • Everson Araújo Nunes
    • 1
  • Luiz Cláudio Fernandes
    • 1
    Email author
  1. 1.Department of Physiology, Biological Science BuildingFederal University of ParanáCuritibaBrazil
  2. 2.Biological and Health Sciences AreaWest of Santa Catarina UniversityJoaçabaBrazil

Personalised recommendations