The influence of increased training volume on cytokines and ghrelin concentration in college level male rowers

  • Raul Rämson
  • Jaak Jürimäe
  • Toivo Jürimäe
  • Jarek Mäestu
Original Article

Abstract

The aim of this study was to investigate plasma IL-6, TNF-α, leptin and ghrelin concentrations during high-volume training. Eight trained male rowers participated. Fasting blood was sampled before (T1) and after (T2) increased training volume and after recovery period (T3). Two-hour rowing was performed at T1, T2 and at T3 with blood samples before, POST and POST 30′. Decrease in fasting leptin was observed at T2 (from 1.31 (0.53) to 0.93 (0.27) ng ml−1; P < 0.05). Leptin was also significantly decreased at POST and POST 30 exercise compared to PRE test at T2. At T2 POST 30′ leptin was significantly lower compared to corresponding value at T1. There were no significant post-exercise changes in ghrelin at T2 compared to T1 and T3. TNF-α was significantly increased POST exercise only at T2. In conclusion, high-volume training causes alterations of post exercise leptin and TNF-α, while increases in ghrelin are down regulated.

Keywords

Cytokines Ghrelin Energy balance Fatigue High-volume training 

Notes

Acknowledgments

This study was supported by the Estonian Science Foundation grant nr. 6671.

References

  1. Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosoda K, Akamizu T et al (2001) Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab 86:4753–4758. doi:10.1210/jc.86.10.4753 PubMedCrossRefGoogle Scholar
  2. Bouchard C, Tremblay A, Leblanc C, Lortie G, Savard R, Thériault G (1983) A method to assess energy expenditure in children and adults. Am J Clin Nutr 37:461–467PubMedGoogle Scholar
  3. Christ ER, Zehnder M, Boesch C, Trepp R, Mullis PE, Diem P et al (2006) The effect of increased lipid intake on hormonal responses during aerobic exercise in endurance-trained men. J Clin Endocrinol 154:397–403Google Scholar
  4. Coppack SW (2001) Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc 60:349–356PubMedCrossRefGoogle Scholar
  5. Desgorces FD, Chennaoui M, Gomez-Merino D, Drogou C, Guezennec CY (2004) Leptin response to acute prolonged exercise after training in rowers. Eur J Appl Physiol 91:677–681. doi:10.1007/s00421-003-1030-0 PubMedCrossRefGoogle Scholar
  6. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248PubMedGoogle Scholar
  7. Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115:911–919. doi:10.1016/j.jaci.2005.02.023 PubMedCrossRefGoogle Scholar
  8. Foster-Schubert KE, McTiernan A, Scott Frayo R, Schwartz RS, Rajan KB, Yasui Y et al (2005) Human plasma levels of ghrelin increase during a one-year exercise program. J Clin Endocrinol Metab 90:820–825. doi:10.1210/jc.2004-2081 PubMedCrossRefGoogle Scholar
  9. Gaillard RC, Spinedi E, Chautard T, Pralong FP (2000) Cytokines, leptin, and the hypothalamo-pituitary-adrenal axis. Ann N Y Acad Sci 917:646–647Google Scholar
  10. Hansen TK, Dall R, Hoshoda H, Kojima M, Kangawa K, Christiansen JS et al (2002) Weight loss increases circulating levels of ghrelin in human obesity. Clin Endocrinol (Oxf) 56:203–206. doi:10.1046/j.0300-0664.2001.01456.x CrossRefGoogle Scholar
  11. Henson DA, Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Shannon M, Bolton MR et al (2000) Influence of carbohydrate on cytokine and phagocytic responses to 2 h of rowing. Med Sci Sports Exerc 32:1384–1389. doi:10.1097/00005768-200008000-00005 PubMedCrossRefGoogle Scholar
  12. Hofmann P, Jurimae J, Jurimae T, Maestu J, Purge P, Pokan R et al (2007) HRTP, prolonged ergometer exercise and single sculling. Int J Sports Med 28:964–969. doi:10.1055/s-2007-965074 PubMedCrossRefGoogle Scholar
  13. Jurimae J, Maestu J, Purge P, Soot T, Jurimae T (2002) Relations among heavy training stress, mood state, and performance for male junior rowers. Percept Mot Skills 95:520–526PubMedGoogle Scholar
  14. Jurimae J, Maestu J, Jurimae T (2003) Leptin as a marker of training stress in highly trained male rowers. Eur J Appl Physiol 90:533–538. doi:10.1007/s00421-003-0879-2 PubMedCrossRefGoogle Scholar
  15. Jurimae J, Hofmann P, Jurimae T, Palm R, Maestu J, Purge P et al (2007) Plasma ghrelin responses to acute sculling exercises in elite male rowers. Eur J Appl Physiol 99:467–474. doi:10.1007/s00421-006-0370-y PubMedCrossRefGoogle Scholar
  16. Kallio J, Pesonen U, Karvonen MK, Kojima M, Hosoda H, Kangawa K et al (2001) Enhanced exercise-induced GH secretion in subjects with Pro7 substitutionin the Prepro-NPY. J Clin Endocrinol Metab 86:5348–5352. doi:10.1210/jc.86.11.5348 PubMedCrossRefGoogle Scholar
  17. Kellmann M, Kallus KW (2001) Recovery-stress questionnaire for athletes. User manual. Human kinetics. Champaign, ILGoogle Scholar
  18. Kraemer RR, Durand RJ, Acevedo EO, Johnson LG, Kraemer GR, Hebert EP et al (2004) Rigorous running increases growth hormone and insulin-like growth factor-I without altering ghrelin. Exp Biol Med 229:240–246Google Scholar
  19. Maestu J, Jurimae J, Jurimae T (2003) Effect of heavy increase in training stress on the plasma level of leptin concentration in highly trained male rowers. Horm Res 59:91–94PubMedCrossRefGoogle Scholar
  20. Maestu J, Jurimae J, Jurimae T (2005) Monitoring of performance and training in rowing. Sports Med 25:597–617. doi:10.2165/00007256-200535070-00005 CrossRefGoogle Scholar
  21. Maestu J, Jurimae J, Kreegipuu K, Jurimae T (2006) Changes in Perceived stress and recovery during heavy training in highly trained male rowers. Sport Psychol 20:24–39Google Scholar
  22. Maestu J, Jurimae J, Valter I, Jurimae T (2008) Increases in ghrelin and decreases in leptin without altering adiponectin during extreme weight loss in male competitive bodybuilders. Metabol 57:221–225. doi:10.1016/j.metabol.2007.09.004 CrossRefGoogle Scholar
  23. Meeusen R, Piacentini MF, Busschaert B, Buyse L, De Schutter G, Stray-Gundersen J (2004) Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over)training status. Eur J Appl Physiol 91:140–146. doi:10.1007/s00421-003-0940-1 PubMedCrossRefGoogle Scholar
  24. Nehlsen-Cannarella SL, Fagoaga OR, Nieman DC, Henson DA, Butterworth DE, Schmitt RL et al (1997) Carbohydrate and the cytokine response to 2, 5 hours of running. J Appl Physiol 82:1662–1667PubMedGoogle Scholar
  25. Nindl BC, Kraemer WJ, Arciero PJ, Samatallee N, Leone C, Mayo M et al (2002) Leptin concentrations experience a delayed reduction after resistance exercise in men. Med Sci Sports Exerc 34:608–613. doi:10.1097/00005768-200204000-00008 PubMedCrossRefGoogle Scholar
  26. Noland RC, Baker JT, Boudreau SR, Kobe RW (2001) Effect of intense training on plasma leptin in male and female swimmers. Med Sci Sports Exerc 33:227–231. doi:10.1097/00005768-200102000-00009 PubMedGoogle Scholar
  27. Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK (1999) Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515:287–291. doi:10.1111/j.1469-7793.1999.287ad.x PubMedCrossRefGoogle Scholar
  28. Pedersen BK, Ostrowski K, Rohde T, Bruunsgaard H (1998) The cytokine response to strenuous exercise. Can J Physiol Pharmacol 76:505–511. doi:10.1139/cjpp-76-5-505 PubMedCrossRefGoogle Scholar
  29. Raglin JS, Morgan WP, O’Conner PJ (1991) Changes in mood state responses during training in female and male college swimmers. Int J Sports Med 12:585–589PubMedGoogle Scholar
  30. Robson-Ansley PJ, Blannin A, Gleeson M (2007) Elevated plasma interleukin-6 levels in trained male triathletes following an acute period of intense interval training. Eur J Appl Physiol 99:353–360. doi:10.1007/s00421-006-0354-y PubMedCrossRefGoogle Scholar
  31. Simsch C, Lormes W, Petersen KG, Baur S, Liu Y, Hackney AC et al (2002) Training influences leptin and thyroid hormones in highly trained rowers. Int J Sports Med 23:442–447. doi:10.1055/s-2002-33738 CrossRefGoogle Scholar
  32. Smith LL (2000) Cytokine hypothesis to overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc 32:317–331. doi:10.1097/00005768-200002000-00011 PubMedCrossRefGoogle Scholar
  33. Starkie RL, Arkinstall MJ, Koukolas I, Hawley J, Febbraio M (2001) Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. J Physiol 533:585–591. doi:10.1111/j.1469-7793.2001.0585a.x PubMedCrossRefGoogle Scholar
  34. Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund PB (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529:237–242. doi:10.1111/j.1469-7793.2000.00237.x PubMedCrossRefGoogle Scholar
  35. Steensberg A, van Hall G, Osada T, Schjerling P, Sacchetti M, Saltin B et al (2001) Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 537:633–639. doi:10.1111/j.1469-7793.2001.00633.x PubMedCrossRefGoogle Scholar
  36. Steinacker JM, Lormes W, Kellmann M (2000) Training of junior rowers before world champinochips: effects on performance, mood state and selected hormonal and metabolic responses. J Sports Med Phys Fitness 40:327–335PubMedGoogle Scholar
  37. Steinacker JM, Lormes W, Reissnecker S, Liu Y (2004) New aspects of the hormone and cytokine responses to training. Eur J Appl Physiol 91:382–391. doi:10.1007/s00421-003-0960-x PubMedCrossRefGoogle Scholar
  38. Stewart LK, Flynn MG, Campell WW, Craig BA, Robinson JP, Timmermann KL et al (2007) The influence of exercise training on inflammatory cytokines and C-reactive protein. Med Sci Sports Exerc 39:1714–1719PubMedGoogle Scholar
  39. Urhausen A, Kindermann W (2002) Diagnosis of overtraining. What tools do we have? Sports Med 32:95–102. doi:10.2165/00007256-200232020-00002 PubMedCrossRefGoogle Scholar
  40. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG et al (2001) Ghrelin enchances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:4992–4995. doi:10.1210/jc.86.12.5992 CrossRefGoogle Scholar
  41. Zaccaria M, Ermolao A, Roi GS, Englaro P, Tegon G, Varnier M (2002) Leptin reduction after endurance races differing in duration and energy expenditure. Eur J Appl Physiol 7:108–111. doi:10.1007/s00421-002-0606-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Raul Rämson
    • 1
  • Jaak Jürimäe
    • 1
  • Toivo Jürimäe
    • 1
  • Jarek Mäestu
    • 1
  1. 1.Institute of Sport Pedagogy and Coaching Sciences, Centre of Behavioural and Health SciencesUniversity of TartuTartuEstonia

Personalised recommendations