European Journal of Applied Physiology

, Volume 104, Issue 5, pp 777–785 | Cite as

Supplementation with an antioxidant cocktail containing coenzyme Q prevents plasma oxidative damage induced by soccer

  • Pedro Tauler
  • Miguel D. Ferrer
  • Antoni Sureda
  • Pere Pujol
  • Franchek Drobnic
  • Josep A. Tur
  • Antoni Pons
Original Article


The aim of the study was to determine the effects of an antioxidant supplementation, which includes coenzyme Q10, on plasma and neutrophil oxidative stress and the antioxidant response after a soccer match. Nineteen voluntary male pre-professional footballers were randomly and double-blinded treated with either a multivitamin and mineral supplement (n = 8) or a placebo (n = 11). After the 3 months of supplementation, the sportsmen played a friendly soccer match of 60 min. The 3-month supplementation induced higher plasma ascorbate and coenzyme Q levels when compared to the placebo group. Antioxidant supplementation influenced plasma oxidative stress markers because they were lower in the supplemented group than in the placebo one after the match. The football match induced decreased neutrophil vitamin E levels and catalase and glutathione peroxidase activities but increased glutathione reductase activity. Antioxidant diet supplementation prevented plasma oxidative damage but did not influence the neutrophil response to a football match.


Soccer Oxidative stress Antioxidant supplementation Coenzyme Q Plasma Neutrophils 



This work has been granted by the Spanish Ministry of Science and Education (DEP2005-00238-C04-01/EOU and DEP2005-00238-C04-02/EOU) and the FEDER funding.


  1. Aebi HE (1984) Catalase. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Verlag Chemie, Basel, pp 273–286Google Scholar
  2. Aguilo A, Tauler P, Fuentespina E, Tur JA, Cordova A, Pons A (2005) Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 84:1–7. doi: 10.1016/j.physbeh.2004.07.034 PubMedCrossRefGoogle Scholar
  3. Alleva R, Tomasetti M, Bompadre S, Littarru GP (1997) Oxidation of LDL and their subfractions: kinetic aspects and CoQ10 content. Mol Aspects Med 18(Suppl):S105–S112. doi: 10.1016/S0098-2997(97)00039-3 PubMedCrossRefGoogle Scholar
  4. Arts FJ, Kuipers H (1994) The relation between power output, oxygen uptake and heart rate in male athletes. Int J Sports Med 15:228–231PubMedCrossRefGoogle Scholar
  5. Balsom PD, Seger J, Sjodin B, Ekblom B (1992) Physiological response to maximal intensity intermittent exercise. Eur J Appl Physiol Occup Physiol 65:144–149. doi: 10.1007/BF00705072 PubMedCrossRefGoogle Scholar
  6. Bhagavan HN, Chopra RK (2006) Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res 40:445–453. doi: 10.1080/10715760600617843 PubMedCrossRefGoogle Scholar
  7. Boyum A (1964) Separation of white blood cells. Nature 204:793–794. doi: 10.1038/204793a0 PubMedCrossRefGoogle Scholar
  8. Cannon J, Blumberg JB (2000) Acute phase immune response in exercise. In: Sen CK, Packer L, Hänninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier , Amsterdam, pp 177–194CrossRefGoogle Scholar
  9. Cases N, Aguilo A, Tauler P, Sureda A, Llompart I, Pons A et al (2005) Differential response of plasma and immune cell’s vitamin E levels to physical activity and antioxidant vitamin supplementation. Eur J Clin Nutr 59:781–788. doi: 10.1038/sj.ejcn.1602143 PubMedCrossRefGoogle Scholar
  10. Cases N, Sureda A, Maestre I, Tauler P, Aguilo A, Cordova A et al (2006) Response of antioxidant defences to oxidative stress induced by prolonged exercise: antioxidant enzyme gene expression in lymphocytes. Eur J Appl Physiol 98:263–269. doi: 10.1007/s00421-006-0273-y PubMedCrossRefGoogle Scholar
  11. Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20:591–598PubMedGoogle Scholar
  12. Ernster L, Forsmark-Andree P (1993) Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin Investig 71:S60–S65. doi: 10.1007/BF00226842 PubMedCrossRefGoogle Scholar
  13. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121. doi: 10.1016/S0076-6879(84)05015-1 PubMedCrossRefGoogle Scholar
  14. Goldberg DM, Spooner RJ (1985) Glutathione reductase. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Verlag Chemie, Basel, pp 258–265Google Scholar
  15. Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120. doi: 10.1113/jphysiol.2004.080564 PubMedCrossRefGoogle Scholar
  16. Jackson MJ (1999) Free radicals in skin and muscle: damaging agents or signals for adaptation? Proc Nutr Soc 58:673–676. doi: 10.1017/S0029665199001317 PubMedCrossRefGoogle Scholar
  17. Kagan T, Davis C, Lin L, Zakeri Z (1999) Coenzyme Q10 can in some circumstances block apoptosis, and this effect is mediated through mitochondria. Ann NY Acad Sci 887:31–47PubMedCrossRefGoogle Scholar
  18. Kaikkonen J, Tuomainen TP, Nyyssonen K, Salonen JT (2002) Coenzyme Q10: absorption, antioxidative properties, determinants, and plasma levels. Free Radic Res 36:389–397. doi: 10.1080/10715760290021234 PubMedCrossRefGoogle Scholar
  19. Karvonen J, Vuorimaa T (1988) Heart rate and exercise intensity during sport activities. Practical application. Sports Med 5:303–311. doi: 10.2165/00007256-198805050-00002 PubMedCrossRefGoogle Scholar
  20. Krause R, Patruta S, Daxbock F, Fladerer P, Biegelmayer C, Wenisch C (2001) Effect of vitamin C on neutrophil function after high-intensity exercise. Eur J Clin Invest 31:258–263. doi: 10.1046/j.1365-2362.2001.00797.x PubMedCrossRefGoogle Scholar
  21. Langsjoen PH, Langsjoen AM (1999) Overview of the use of CoQ10 in cardiovascular disease. Biofactors 9:273–284PubMedGoogle Scholar
  22. Lass A, Sohal RS (2000) Effect of coenzyme Q(10) and alpha-tocopherol content of mitochondria on the production of superoxide anion radicals. FASEB J 14:87–94PubMedGoogle Scholar
  23. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357. doi: 10.1016/S0076-6879(94)33040-9 PubMedCrossRefGoogle Scholar
  24. McArdle F, Pattwell DM, Vasilaki A, McArdle A, Jackson MJ (2005) Intracellular generation of reactive oxygen species by contracting skeletal muscle cells. Free Radic Biol Med 39:651–657. doi: 10.1016/j.freeradbiomed.2005.04.010 PubMedCrossRefGoogle Scholar
  25. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  26. Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S et al (2001) Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol 84:1–6. doi: 10.1007/s004210000342 PubMedCrossRefGoogle Scholar
  27. Morante M, Sandoval J, Gomez-Cabrera MC, Rodriguez JL, Pallardo FV, Vina JR et al (2005) Vitamin E deficiency induces liver nuclear factor-kappaB DNA-binding activity and changes in related genes. Free Radic Res 39:1127–1138. doi: 10.1080/10715760500193820 PubMedCrossRefGoogle Scholar
  28. Nieman DC (1994) Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc 26:128–139. doi: 10.1249/00005768-199402000-00002 PubMedCrossRefGoogle Scholar
  29. Niklowitz P, Menke T, Andler W, Okun JG (2004) Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: comparison of the antioxidant level in blood cells and their environment in healthy children and after oral supplementation in adults. Clin Chim Acta 342:219–226. doi: 10.1016/j.cccn.2003.12.020 PubMedCrossRefGoogle Scholar
  30. Ohno H, Yahata T, Sato Y, Yamamura K, Taniguchi N (1988) Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men. Eur J Appl Physiol Occup Physiol 57:173–176. doi: 10.1007/BF00640658 PubMedCrossRefGoogle Scholar
  31. Overvad K, Diamant B, Holm L, Holmer G, Mortensen SA, Stender S (1999) Coenzyme Q10 in health and disease. Eur J Clin Nutr 53:764–770. doi: 10.1038/sj.ejcn.1600880 PubMedCrossRefGoogle Scholar
  32. Petersen EW, Ostrowski K, Ibfelt T, Richelle M, Offord E, Halkjaer-Kristensen J et al (2001) Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise. Am J Physiol Cell Physiol 280:C1570–C1575PubMedGoogle Scholar
  33. Podda M, Weber C, Traber MG, Milbradt R, Packer L (1999) Sensitive high-performance liquid chromatography techniques for simultaneous determination of tocopherols, tocotrienols, ubiquinols and ubiquinones in biological samples. In: Packer L (ed) Methods in enzymology. Oxidants and antioxidants. Academic Press, San Diego, pp 330–341CrossRefGoogle Scholar
  34. Radak Z, Kaneko T, Tahara S, Nakamoto H, Ohno H, Sasvari M et al (1999) The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med 27:69–74. doi: 10.1016/S0891-5849(99)00038-6 PubMedCrossRefGoogle Scholar
  35. Radak Z, Sasvari M, Nyakas C, Pucsok J, Nakamoto H, Goto S (2000) Exercise preconditioning against hydrogen peroxide-induced oxidative damage in proteins of rat myocardium. Arch Biochem Biophys 376:248–251. doi: 10.1006/abbi.2000.1719 PubMedCrossRefGoogle Scholar
  36. Radak Z, Ogonovszky H, Dubecz J, Pavlik G, Sasvari M, Pucsok J et al (2003) Super-marathon race increases serum and urinary nitrotyrosine and carbonyl levels. Eur J Clin Invest 33:726–730. doi: 10.1046/j.1365-2362.2003.01202.x PubMedCrossRefGoogle Scholar
  37. Reid MB (2001) Invited review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 90:724–731. doi: 10.1063/1.1381002 PubMedCrossRefGoogle Scholar
  38. Sastre J, Asensi M, Gasco E, Pallardo FV, Ferrero JA, Furukawa T et al (1992) Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol 263:R992–R995PubMedGoogle Scholar
  39. Schroder H, Navarro E, Tramullas A, Mora J, Galiano D (2000) Nutrition antioxidant status and oxidative stress in professional basketball players: effects of a three compound antioxidative supplement. Int J Sports Med 21:146–150. doi: 10.1055/s-2000-8870 PubMedCrossRefGoogle Scholar
  40. Sureda A, Tauler P, Aguilo A, Cases N, Fuentespina E, Cordova A et al (2005) Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic Res 39:1317–1324. doi: 10.1080/10715760500177500 PubMedCrossRefGoogle Scholar
  41. Suzuki K, Totsuka M, Nakaji S, Yamada M, Kudoh S, Liu Q et al (1999) Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J Appl Physiol 87:1360–1367PubMedGoogle Scholar
  42. Tauler P, Aguilo A, Cases N, Sureda A, Gimenez F, Villa G et al (2002a) Acute phase immune response to exercise coexists with decreased neutrophil antioxidant enzyme defences. Free Radic Res 36:1101–1107. doi: 10.1080/1071576021000028334 PubMedCrossRefGoogle Scholar
  43. Tauler P, Aguilo A, Fuentespina E, Tur JA, Pons A (2002b) Diet supplementation with vitamin E, vitamin C and beta-carotene cocktail enhances basal neutrophil antioxidant enzymes in athletes. Pflugers Arch 443:791–797. doi: 10.1007/s00424-001-0770-0 PubMedCrossRefGoogle Scholar
  44. Tauler P, Aguilo A, Gimeno I, Fuentespina E, Tur JA, Pons A (2003a) Influence of vitamin C diet supplementation on endogenous antioxidant defences during exhaustive exercise. Pflugers Arch 446:658–664. doi: 10.1007/s00424-003-1112-1 PubMedCrossRefGoogle Scholar
  45. Tauler P, Aguilo A, Gimeno I, Noguera A, Agusti A, Tur JA et al (2003b) Differential response of lymphocytes and neutrophils to high intensity physical activity and to vitamin C diet supplementation. Free Radic Res 37:931–938. doi: 10.1080/1071576031000150454 PubMedCrossRefGoogle Scholar
  46. Tauler P, Sureda A, Cases N, Aguilo A, Rodriguez-Marroyo JA, Villa G et al (2006) Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. J Nutr Biochem 17:665–671. doi: 10.1016/j.jnutbio.2005.10.013 PubMedCrossRefGoogle Scholar
  47. Thomas SR, Neuzil J, Stocker R (1996) Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation. Arterioscler Thromb Vasc Biol 16:687–696PubMedGoogle Scholar
  48. Tsao CS, Salimi SL (1982) Differential determination of L-ascorbic acid and D-isoascorbic acid by reversed-phase high-performance liquid chromatography with electrochemical detection. J Chromatogr A 245:355–358. doi: 10.1016/S0021-9673(00)88023-1 CrossRefGoogle Scholar
  49. Welch RW, Wang Y, Crossman A, Park JB, Kirk KL, Levine M (1995) Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms. J Biol Chem 270:12584–12592. doi: 10.1074/jbc.270.13.7047 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Pedro Tauler
    • 1
  • Miguel D. Ferrer
    • 1
  • Antoni Sureda
    • 1
  • Pere Pujol
    • 2
  • Franchek Drobnic
    • 2
    • 3
  • Josep A. Tur
    • 1
  • Antoni Pons
    • 1
  1. 1.Departament de Biologia Fonamental i Ciències de la Salut. Edifici Guillem ColomUniversitat de les Illes BalearsPalma de Mallorca, Illes BalearsSpain
  2. 2.Sports Physiology DepartmentCentre d’Alt Rendiment de BarcelonaSant Cugat del Vallès, BarcelonaSpain
  3. 3.Medical Services FC BarcelonaBarcelonaSpain

Personalised recommendations