The influence of maximal isometric activity on twitch and H-reflex potentiation, and quadriceps femoris performance

  • Jonathan P. FollandEmail author
  • Tomoyoshi Wakamatsu
  • Marius S. Fimland
Original Article


The possibility of post-activation potentiation (PAP), enhanced neuromuscular performance following prior contractile activity, has received considerable attention but with little assessment of physiological changes. Maximum twitch force and H-reflex amplitude can be used to quantify the effect of prior activity, and may account for any PAP. Quadriceps femoris maximum twitch force (twitch potentiation, TP), the EMG Hmax/Mmax ratio and associated twitch force ratio (reflex potentiation, RP), were measured for 18 min after a period of rest (CON condition) and a 10 s isometric maximal voluntary contraction (iMVC, EXP condition) in eight recreationally active males. In comparison to CON, the Hmax/Mmax ratio (electrical RP) was potentiated for 5–11 min after iMVC (< 0.05), with the highest values recorded 5 min post (+42 ± 27% compared to mean of CON). Relative twitch force at Hmax (mechanical RP) was potentiated from 5 to 9 min post (P < 0.05). TP was greatest 10 s after iMVC (+67 compared to CON), and remained elevated for 18 min (< 0.05). Optimal conditions for PAP were arbitrarily decided to occur 5 min after iMVC (TP, ~+16%; electrical RP, +42%), and performance (isometric rate of force development and isokinetic torque at 4.19 rad s−1) was measured at this point after CON and EXP treatments. No measures of performance were improved with EXP (= 0.26–0.91). Electrical and mechanical RP of the quadriceps femoris was demonstrated, but the clear RP and TP found to occur after a 10 s iMVC did not produce any performance benefit.


Reflex potentiation Twitch potentiation Post-activation potentiation Muscle function Rate of force development 


  1. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyrhe-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92:2309–2318PubMedGoogle Scholar
  2. Batista MA, Ugrinowitsch C, Roschel H, Lotufo R, Ricard MD, Tricoli VA (2007) Intermittent exercise as a conditioning activity to induce post-activation potentiation. J Strength Cond Res 21:837–840. doi: 10.1519/R-20586.1 PubMedCrossRefGoogle Scholar
  3. Baudry S, Duchateau J (2007) Postactivation potentiation in human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol 102:1394–1401. doi: 10.1152/japplphysiol.01254.2006 PubMedCrossRefGoogle Scholar
  4. Buchthal F, Schmalbruch H (1970) Contraction times of twitches evoked by H-reflexes. Acta Physiol Scand 80:378–382PubMedCrossRefGoogle Scholar
  5. Burke D, Gandevia SC, McKeon B (1984) Monosynaptic and oligosynaptic contributions to the human ankle jerk and H-reflex. J Neurophysiol 52:435–447PubMedGoogle Scholar
  6. Burke D, Adams NW, Skuse NF (1989) The effects of voluntary contraction on the H-reflex of human limb muscles. Brain 112:417–433. doi: 10.1093/brain/112.2.417 PubMedCrossRefGoogle Scholar
  7. Enoka RM, Hutton RS, Eldred E (1980) Changes in excitability of tendon tap and Hoffman reflexes following voluntary contractions. Electroencephalogr Clin Neurophysiol 48:664–672. doi: 10.1016/0013-4694(80)90423-X PubMedCrossRefGoogle Scholar
  8. French DN, Kraemer WJ, Cooke CB (2003) Changes in dynamic exercise performance following a sequence of preconditioning isometric muscle actions. J Strength Cond Res 17:678–685. doi :10.1519/1533-4287(2003)017<0678:CIDEPF>2.0.CO;2PubMedCrossRefGoogle Scholar
  9. Gilbert G, Lees A (2005) Changes in the force development characteristics of muscle following repeated maximum force and power exercise. Ergonomics 48:1576–1584. doi: 10.1080/00140130500101163 PubMedCrossRefGoogle Scholar
  10. Gollhofer A, Schopp A, Rapp W, Stroinik V (1998) Changes in reflex excitability following isometric contraction in humans. Eur J Appl Physiol 77:89–97. doi: 10.1007/s004210050305 CrossRefGoogle Scholar
  11. Gossen ER, Sale DG (2000) Effect of postactivation potentiation on dynamic knee extension performance. Eur J Appl Physiol 83:524–530. doi: 10.1007/s004210000304 PubMedCrossRefGoogle Scholar
  12. Güillich A, Schmidtbleicher D (1996) MVC-induced short-term potentiation of explosive force. N Stud Athl 11:67–81Google Scholar
  13. Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2000) Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol 88:2131–2137PubMedGoogle Scholar
  14. Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G et al (1999) SENIAM 8: European recommendations for surface electromyography. Roessingh Research and Development BV, EnscedeGoogle Scholar
  15. Hodgson M, Docherty D, Robbins D (2005) Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med 35:585–595. doi: 10.2165/00007256-200535070-00004 PubMedCrossRefGoogle Scholar
  16. Hopkins JT, Wagie NC (2003) Intrasession and intersession reliability of the quadriceps Hoffmann reflex. Electroencephalogr Clin Neurophysiol 43:85–89Google Scholar
  17. Hrysomallis C, Kidgell D (2001) Effect of heavy dynamic resistive exercise on acute upper-body power. J Strength Cond Res 15:426–430. doi :10.1519/1533-4287(2001)015<0426:EOHDRE>2.0.CO;2PubMedCrossRefGoogle Scholar
  18. Hultman E, Sjoholm H (1983) Electromyogram, force and relaxation time during and after continuous electrical stimulation of human skeletal muscle in situ. J Physiol 339:33–40PubMedGoogle Scholar
  19. Jones P, Lees A (2003) A biomechanical analysis of the acute effects of complex training using lower limb exercises. J Strength Cond Res 17:694–700. doi :10.1519/1533-4287(2003)017<0694:ABAOTA>2.0.CO;2PubMedCrossRefGoogle Scholar
  20. Jones DA, Parker DF (1989) Development of a portable strain gauge to measure human muscle isometric strength. J Physiol 145:11PGoogle Scholar
  21. Kameyama O, Hayes KC, Wolfe D (1989) Methodological considerations contributing to variability of the quadriceps H-reflex. Am J Phys Med Rehabil 68:277–282. doi: 10.1097/00002060-198912000-00004 PubMedCrossRefGoogle Scholar
  22. Kitago T, Mazzocchio R, Liuzzi G, Cohen LG (2004) Modulation of H-reflex excitability by tetanic stimulation. Clin Neurophysiol 115:858–861. doi: 10.1016/j.clinph.2003.11.029 PubMedCrossRefGoogle Scholar
  23. Lloyd DPC (1949) Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J Gen Physiol 33:147–169. doi: 10.1085/jgp.33.2.147 PubMedCrossRefGoogle Scholar
  24. Maffiuletti NA, Martin A, Babault N, Pensini M, Lucas B, Schieppati M (2001) Electrical and mechanical Hmax-to-Mmax ratio in power- and endurance-trained athletes. J Appl Physiol 90:3–9PubMedGoogle Scholar
  25. McFadden LK, McComas AJ (1996) Late depression of muscle excitability in humans after fatiguing stimulation. J Physiol 496:851–855PubMedGoogle Scholar
  26. Metzger JM, Greaser ML, Moss RL (1989) Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned fibres Implications for twitch potentiation in intact muscle. J Gen Physiol 93:855–883. doi: 10.1085/jgp.93.5.855 PubMedCrossRefGoogle Scholar
  27. Mirkov DM, Nedeljkovic A, Milanovic S, Jaric S (2004) Muscle strength testing: evaluation of tests of explosive force production. Eur J Appl Physiol 91:147–154. doi: 10.1007/s00421-003-0946-8 PubMedCrossRefGoogle Scholar
  28. Moore RL, Houston ME, Iwamoto GA, Stull JT (1985) Phosphorylation of rabbit skeletal muscle myosin in situ. J Cell Physiol 125:301–305. doi: 10.1002/jcp.1041250219 PubMedCrossRefGoogle Scholar
  29. O’Leary DD, Hope K, Sale DG (1997) Posttetanic potentiation of human dorsiflexors. J Appl Physiol 83:2131–2138PubMedGoogle Scholar
  30. Parker DF, Round JM, Sacco P, Jones DA (1990) A cross-sectional survey of upper and lower limb strength in boys and girls during childhood and adolescence. Ann Hum Biol 17:199–211. doi: 10.1080/03014469000000962 PubMedCrossRefGoogle Scholar
  31. Pierrot-Deseilligny E (1997) Assessing changes in presynaptic inhibition of Ia afferents during movements in humans. J Neurosci Methods 74:189–199. doi: 10.1016/S0165-0270(97)02249-8 PubMedCrossRefGoogle Scholar
  32. Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord: Its role in motor control and movement disorders. Cambridge University Press, New YorkGoogle Scholar
  33. Rankin G, Stokes M (1998) Reliability of assessment tools in rehabilitation: an illustration of appropriate statistical analyses. Clin Rehabil 12:187–199. doi: 10.1191/026921598672178340 PubMedCrossRefGoogle Scholar
  34. Sale DG (2002) Postactivation potentiation: role in human performance. Exerc Sport Sci Rev 30:138–143. doi: 10.1097/00003677-200207000-00008 PubMedCrossRefGoogle Scholar
  35. Scaglioni G, Ferri A, Minetti AE, Martin A, Van Hoecke J, Capadaglio P et al (2002) Plantar flexor activation capacity and H reflex in older adults: adaptations to strength training. J Appl Physiol 92:2292–2302PubMedGoogle Scholar
  36. Scott SL, Docherty D (2004) Acute effects of heavy preloading on vertical and horizontal jump performance. J Strength Cond Res 18:201–205. doi: 10.1519/R-13123.1 PubMedCrossRefGoogle Scholar
  37. Smith JC, Fry AC (2007) Effects of a ten-second maximum voluntary contraction on regulatory myosin light-chain phosphorylation and dynamic performance measures. J Strength Cond Res 21:73–76. doi: 10.1519/R-20185.1 PubMedCrossRefGoogle Scholar
  38. Stein RB, Thompson AK (2006) Muscle reflexes in motion: how, what and why? Exerc Sport Sci Rev 34:145–153. doi: 10.1249/01.jes.0000240024.37996.e5 PubMedCrossRefGoogle Scholar
  39. Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol 264:C1085–C1095PubMedGoogle Scholar
  40. Trimble MH, Harp SS (1998) Postexercise potentiation of the H-reflex in humans. Med Sci Sports Exerc 30:933–941. doi: 10.1097/00005768-199806000-00024 PubMedCrossRefGoogle Scholar
  41. Vandenboom R, Grange RW, Houston ME (1993) Threshold for force potentiation associated with skeletal myosin phosphorylation. Am J Physiol 265:C1456–C1462PubMedGoogle Scholar
  42. Vandenboom R, Grange RW, Houston ME (1995) Myosin phosphylation enhances rate of force development in fast-twitch skeletal muscle. Am J Physiol 268:C596–C603PubMedGoogle Scholar
  43. Young WB, Jenner A, Griffiths K (1998) Acute enhancement of power performance from heavy load squats. J Strength Cond Res 12:82–88. doi :10.1519/1533-4287(1998)012<0082:AEOPPF>2.3.CO;2CrossRefGoogle Scholar
  44. Zehr PE (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86:455–468. doi: 10.1007/s00421-002-0577-5 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jonathan P. Folland
    • 1
    Email author
  • Tomoyoshi Wakamatsu
    • 1
  • Marius S. Fimland
    • 1
    • 2
  1. 1.School of Sport and Exercise SciencesLoughborough UniversityLoughboroughUK
  2. 2.Department of Circulation and Medical Imaging, Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations