Advertisement

European Journal of Applied Physiology

, Volume 104, Issue 3, pp 481–489 | Cite as

The acute post-exercise response of blood pressure varies with time of day

  • Helen Jones
  • Christopher Pritchard
  • Keith George
  • Ben Edwards
  • Greg Atkinson
Original Article

Abstract

The reactivity of ambulatory blood pressure following a given change in everyday physical activities is highest in the morning. Whether the acute response of blood pressure following a controlled bout of steady-state exercise is influenced by time of day is examined in this study. After 45 min of supine rest, 12 male normotensives completed 30 min of cycling at 70% \( \dot V{\text{O}}_{{2{\text{peak}}}} \) which began at either 0800 or 1600 hours. Arterial blood pressure, cardiac output, total peripheral resistance, cutaneous blood flow and temperature were determined before, and up to 90 min after, exercise. Mean ± SE arterial pressure, averaged over the acute (20-min) period, reduced by 7 ± 2 mmHg following exercise at 1600 hours but increased by 3 ± 3 mmHg following exercise at 0800 hours (P = 0.03). Total peripheral resistance fell by 4.2 ± 0.8 mmHg l−1 min−1 after exercise at 1600 hour, but increased slightly by 0.1 ± 0.5 mmHg l−1 min−1 after morning exercise (P = 0.02). We conclude that the acutely hypotensive effects following 30 min of steady state exercise are less marked in the morning, probably because the exercise-mediated decrease in peripheral resistance is not as apparent at this time of day.

Keywords

Cardiac output Total peripheral resistance Blood flow Diurnal variation 

References

  1. Aldemir H, Atkinson G, Cable T, Edwards B, Waterhouse J, Reilly T (2000) A comparison of the immediate effects of moderate exercise in the early morning and late afternoon on core temperature and cutaneous thermoregulatory mechanisms. Chronobiol Int 17:197–207. doi: 10.1081/CBI-100101043 PubMedCrossRefGoogle Scholar
  2. Bird S, Davison R (1997) Physiological testing guidelines. B.A.S.E.S, LeedsGoogle Scholar
  3. Eckert S, Horstkotte D (2002) Comparison of portapres non-invasive blood pressure measurement on the finger with intra-aortic pressure measurement during incremental bicycle exercise. Blood Press Monit 7:179–183. doi: 10.1097/00126097-200206000-00006 PubMedCrossRefGoogle Scholar
  4. Harriss DJ, Sale C, George K, Atkinson G, Cable NT (2007) Non-invasive stroke volume measurement: arterial pulse analysis compared with pulse-Doppler echocardiography. Med Sci Sports Exerc 34:S62. doi: 10.1097/00005768-200205001-00337 CrossRefGoogle Scholar
  5. Imholz BPM, Wieling W, van Montfrans GA, Wesseling KH (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38:605–616. doi: 10.1016/S0008-6363(98)00067-4 PubMedCrossRefGoogle Scholar
  6. Jellema WT, Imholz BPM, Oosting H, Wesseling KH, van Lieshout JJ (1999) Estimation of beat-to-beat changes in stroke volume from arterial pressure: a comparison of two pressure wave analysis techniques during head-up tilt testing in young healthy men. Clin Auton Res 9:185–192. doi: 10.1007/BF02330482 PubMedCrossRefGoogle Scholar
  7. Jones H, Atkinson G, Leary A, George K, Murphy M, Waterhouse J (2006) The reactivity of ambulatory blood pressure to physical activity varies with time of day. Hypertension 47:778–784. doi: 10.1161/01.HYP.0000206421.09642.b5 PubMedCrossRefGoogle Scholar
  8. Jones H, George K, Edwards B, Atkinson G (2007) Is the magnitude of acute post-exercise hypotension mediated by exercise intensity or total work done? Eur J Appl Physiol 102:33–40. doi: 10.1007/s00421-007-0562-0 PubMedCrossRefGoogle Scholar
  9. Kaplan NM (2003) Morning surge in blood pressure. Circulation 107:1347. doi: 10.1161/01.CIR.0000060887.83850.46 PubMedCrossRefGoogle Scholar
  10. Kario K, Schwartz JE, Pickering TG (1998) Ambulatory physical activity as a determinant of diurnal blood pressure variation. Hypertension 34:685–691Google Scholar
  11. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M et al (2004) Morning surge in BP as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation 107:1401–1406. doi: 10.1161/01.CIR.0000056521.67546.AA CrossRefGoogle Scholar
  12. Kerkhof GA, Van Dongen HPA, Bobbert AC (1998) Absence of endogenous circadian rhythmicity in blood pressure. Am J Hypertens 11:373–377. doi: 10.1016/S0895-7061(97)00461-5 PubMedCrossRefGoogle Scholar
  13. Khoury AF, Sunderajan P, Kaplan NM (1992) The early morning rise in blood pressure is related mainly to ambulation. Am J Hypertens 5:339–344PubMedGoogle Scholar
  14. Leary AC, Struthers AD, Donnan PT, MacDonald MT, Murphy MB (2002) The morning surge in blood pressure and heart rate is dependent on levels of physical activity after waking. J Hypertens 20:865–870. doi: 10.1097/00004872-200205000-00020 PubMedCrossRefGoogle Scholar
  15. MacDonald JR, Hogben CD, Tarnopolsky MA, MacDougall JD (2001) Post-exercise hypotension is sustained during subsequent bouts of mild exercise and simulated activities of daily living. J Hum Hypertens 15:567–571. doi: 10.1038/sj.jhh.1001223 PubMedCrossRefGoogle Scholar
  16. Millar-Craig MW, Bishop CN, Raftery EB (1978) Circadian variation of blood-pressure. Lancet 1:795–797. doi: 10.1016/S0140-6736(78)92998-7 PubMedCrossRefGoogle Scholar
  17. Muller JE (1999) Circadian variation in cardiovascular events. Am J Hypertens 12:35S–42S. doi: 10.1016/S0895-7061(98)00278-7 PubMedCrossRefGoogle Scholar
  18. Muller JE, Tofler GH, Stone PH (1989) Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79:733–743PubMedGoogle Scholar
  19. Nieminen T, Kööbi T, Turanmaa V (2002) Can stroke volume and cardiac output be determined reliably in a tilt-table test using the pulse contour method. Clin Physiol 20:488–495. doi: 10.1046/j.1365-2281.2000.00288.x CrossRefGoogle Scholar
  20. O’Brien E, Asmar R, Beilin L, Imai Y, Mancia G, Mengden T et al (2005) Practical guidelines for the European Society of hypertension for clinic, ambulatory and self blood pressure measurement. J Hypertens 23:697–701. doi: 10.1097/01.hjh.0000163132.84890.c4 PubMedCrossRefGoogle Scholar
  21. O’Brien E, Petrie J, Littler W, de Swiet M, Padfield PL, O’Malley K et al (1990) The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems. J Hypertens 8:607–619. doi: 10.1097/00004872-199007000-00004 PubMedCrossRefGoogle Scholar
  22. Palatini P, Frigo G, Bertolo O, Roman E, Da Corta R, Winnicki M (1998) Validation of the A&D TM-2430 device for ambulatory blood pressure monitoring and evaluation of performance according to subjects’ characteristics. Blood Press Monit 3:255–260PubMedGoogle Scholar
  23. Park S, Jastremski CA, Wallace JP (2005) Time of day for exercise on blood pressure reduction in dipping and nondipping hypertension. J Hum Hypertens 19:597–605. doi: 10.1038/sj.jhh.1001901 PubMedCrossRefGoogle Scholar
  24. Pescatello LS, Kulikowich JM (2001) The aftereffects of dynamic exercise on ambulatory blood pressure. Med Sci Sports Exerc 33:1855–1861. doi: 10.1097/00005768-200111000-00009 PubMedCrossRefGoogle Scholar
  25. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004) American College of Sports Medicine. Position stand. Exercise and hypertension. Med Sci Sports Exerc 36:533–553. doi: 10.1249/01.MSS.0000115224.88514.3A PubMedCrossRefGoogle Scholar
  26. Pitt MJ, Marshall P, Diesch JP, Hainsworth R (2004) Cardiac output by portapres. Clin Sci 106:407–412. doi: 10.1042/CS20030279 PubMedCrossRefGoogle Scholar
  27. Sterne JAC, Davey-Smith G (2001) Sifting the evidence—what’s wrong with significance tests? BMJ 322:226–231PubMedCrossRefGoogle Scholar
  28. Stok WJ, Baisch F, Hillebrecht A, Schulz H, Meyer M, Karemaker JM (1993) Noninvasive cardiac output measurement by arterial pulse analysis compared with inert gas rebreathing. J Appl Physiol 74:2687–2693PubMedGoogle Scholar
  29. Stok WJ, Westerhof BE, Karemaker JM (2006) Changes in finger aorta pressure transfer function during and after exercise. J Appl Physiol 101:1207–1214. doi: 10.1152/japplphysiol.00876.2005 PubMedCrossRefGoogle Scholar
  30. Thompson PD, Franklin BA, Baladay GJ, Blair N, Carrado D, Estes M et al (2007) Exercise and acute cardiovascular events: placing the risks into perspective. A scientific statement from the American Heart Association Council on nutrition. Physical activity and metabolism and the Council on Clinical Cardiology, in collaboration with the American College of Sports Medicine. Circulation 115:2358–2368. doi: 10.1161/CIRCULATIONAHA.107.181485 PubMedCrossRefGoogle Scholar
  31. Van Dongen HPA, Maislin G, Kerkhof GA (2001) Repeated assessment of the endogenous 24-hour profile of blood pressure under constant routine. Chronobiol Int 18:85–98. doi: 10.1081/CBI-100001178 PubMedCrossRefGoogle Scholar
  32. Veerman DP, Imholz BP, Wieling W, Wesseling KH, van Montfrans GA (1995) Circadian profile of systemic hemodynamics. Hypertension 26:55–59PubMedGoogle Scholar
  33. Waterhouse J, Drust B, Weinert D, Edwards B, Gregson W, Kao S et al (2005) The circadian rhythm of core temperature: origin and some implications for exercise performance. Chronobiol Int 22:205–223Google Scholar
  34. Wesseling KH, Jansen JRC, Settels JJ, Schreuder JJ (1993) Computation of aortic flow from pressure in humans using a nonlinear, three element model. J Appl Physiol 74:2566–2573PubMedGoogle Scholar
  35. Wilkins BW, Minson CT, Halliwill JR (2004) Regional hemodynamics during postexercise hypotension. II Cutaneous circulation. J Appl Physiol 97:2071–2076. doi: 10.1152/japplphysiol.00466.2004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Helen Jones
    • 1
  • Christopher Pritchard
    • 1
  • Keith George
    • 1
  • Ben Edwards
    • 1
  • Greg Atkinson
    • 1
  1. 1.Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations