Advertisement

Twitch potentiation after voluntary versus electrically induced isometric contractions in human knee extensor muscles

  • Bernardo RequenaEmail author
  • Helena Gapeyeva
  • Inmaculada García
  • Jaan Ereline
  • Mati Pääsuke
Original Article

Abstract

Twitch potentiation in knee extensor (KE) muscles after a 7-s conditioning isometric maximal voluntary contraction (MVC trial), submaximal (25% MVC) voluntary contraction (SVC trial) and submaximal tetanic contraction (25% MVC) induced by percutaneous electrical stimulation at 100 Hz (PES trial) was compared in 12 men aged 19–25 years. Isometric twitch characteristics of KE muscles were measured before conditioning contraction and following 10-min recovery by supramaximal electrical stimulation of the femoral nerve. During MVC trial, twitch peak torque (Pt) potentiated (P < 0.05) immediately after the conditioning contraction with sharp decline during the first and third minute of recovery. No significant potentiation of twitch Pt was observed in SVC trial. During PES trial, twitch Pt was potentiated (P < 0.05) within 3–10 min of recovery. The time-course of isometric twitch was not significantly altered by conditioning contractions. It was concluded that twitch potentiation in the KE muscles differed markedly following the three conditioning contractions.

Keywords

Postactivation potentiation Human knee extensor muscles Electrical stimulation Twitch contraction 

References

  1. Baudry S, Duchateau J (2004) Postactivation potentiation in human muscle is not related to the type of maximal conditioning contraction. Muscle Nerve 30:328–336. doi: 10.1002/mus.20101 PubMedCrossRefGoogle Scholar
  2. Baudry S, Duchateau J (2007) Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol 102:1394–1401PubMedCrossRefGoogle Scholar
  3. Beltman JGM, de Haan A, Haan H, Gerrits HL, van Mechelen W, Sargeant AJ (2004) Metabolically assessed muscle fiber recruitment in brief isometric contractions at different intensities. Eur J Appl Physiol 92:485–492. doi: 10.1007/s00421-004-1105-6 PubMedCrossRefGoogle Scholar
  4. Binder-Macleod SA, Dean JC, Ding J (2002) Electrical stimulation factors in potentiation of human quadriceps femoris. Muscle Nerve 25:271–279. doi: 10.1002/mus.10027 PubMedCrossRefGoogle Scholar
  5. Brown IE, Loeb GE (1998) Post-activation potentiation—a clue for simplifying models of muscle dynamics. Am Zool 38:743–754Google Scholar
  6. De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982) Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol 329:113–128PubMedGoogle Scholar
  7. Desmedt JE, Godaux E (1978) Ballistic contractions in fast or slow human muscles: discharge patterns of single motor units. J Physiol 285:185–196PubMedGoogle Scholar
  8. Desmedt JE, Hainaut K (1968) Kinetics of myofilament activation in potentiated contraction: staircase phenomenon in human skeletal muscle. Nature 217:529–532. doi: 10.1038/217529a0 PubMedCrossRefGoogle Scholar
  9. Ding J, Wexler AS, Binder-Macleod SA (2002) A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle Nerve 26:477–485. doi: 10.1002/mus.10198 PubMedCrossRefGoogle Scholar
  10. Ding J, Storaska JA, Binder-Macleod SA (2003) Effect of potentiation on the catchlike property of human skeletal muscles. Muscle Nerve 27:312–319PubMedCrossRefGoogle Scholar
  11. Edwards RHT, Hill DK, Jones DA, Merton PA (1977) Fatigue of long duration in human skeletal muscle after exercise. J Physiol 272:769–778PubMedGoogle Scholar
  12. Feiereisen P, Duchateau J, Hainaut K (1997) Motor unit recruitment order during voluntary and electrically induced contractions in the tibialis anterior. Exp Brain Res 114:117–123. doi: 10.1007/PL00005610 PubMedCrossRefGoogle Scholar
  13. Gossen ER, Allingham K, Sale DG (2001) Effect of temperature on post-tetanic potentiation in human dorsiflexor muscles. Can J Physiol Pharmacol 79:49–58. doi: 10.1139/cjpp-79-1-49 PubMedCrossRefGoogle Scholar
  14. Grange RW, Vandenboom R, Houston ME (1993) Physiological significance of myosin phosphorylation in skeletal muscle. Can J Appl Physiol 18:229–242PubMedGoogle Scholar
  15. Grimby L, Hannerz J, Hedman B (1981) The fatigue and voluntary discharge properties of single motor units in man. J Physiol 316:545–554PubMedGoogle Scholar
  16. Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2000) Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol 88:2131–2137PubMedGoogle Scholar
  17. Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2003) Interactions of fiber type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 178:165–173. doi: 10.1046/j.1365-201X.2003.01121.x PubMedCrossRefGoogle Scholar
  18. Houston ME, Grange RW (1990) Myosin phosphorylation, twitch potentiation, and fatigue in human skeletal muscle. Can J Physiol Pharmacol 68:908–913PubMedGoogle Scholar
  19. Houston ME, Lingley MD, Stuart DS, Grange RW (1987) Myosin light chain phosphorylation in intact human muscle. Pflugers Arch 403:348–352. doi: 10.1007/BF00589245 CrossRefGoogle Scholar
  20. Knaflitz M, Merletti R, De Luca CJ (1990) Interference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol 68:1657–1667PubMedGoogle Scholar
  21. Krarup C (1981) Enhancement and diminution of mechanical tension evoked by staircase and by tetanus in rat muscle. J Physiol 311:355–372PubMedGoogle Scholar
  22. Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25:438–444. doi: 10.1002/mus.10047 PubMedCrossRefGoogle Scholar
  23. Kugelberg E, Thornell LE (1983) Contraction time, histochemical type, and terminal cisternae volume of rat motor units. Muscle Nerve 6:149–153. doi: 10.1002/mus.880060211 PubMedCrossRefGoogle Scholar
  24. Moore RL, Stull JT (1984) Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. Am J Physiol 247:C462–C471PubMedGoogle Scholar
  25. O’Leary DD, Hope K, Sale DG (1997) Posttetanic potentiation of human dorsiflexors. J Appl Physiol 83:2131–2138PubMedGoogle Scholar
  26. O’Leary DD, Hope K, Sale DG (1998) Influence of gender on post-tetanic potentiation in human dorsiflexors. Can J Physiol Pharmacol 76:772–779. doi: 10.1139/cjpp-76-7-8-772 PubMedCrossRefGoogle Scholar
  27. Pääsuke M, Ereline J, Gapeyeva H (1998) Twitch potentiation capacity of plantarflexor muscles in endurance and power athletes. Biol Sport 15:171–178Google Scholar
  28. Pääsuke M, Ereline J, Gapeyeva H, Torop T (2002) Twitch contractile properties of plantarflexor muscles in female power-trained athletes. Med Sport 55:279–286Google Scholar
  29. Pääsuke M, Saapar L, Ereline J, Gapeyeva H, Requena B, Ööpik V (2007) Postactivation potentiation of knee extensor muscles in power- and endurance-trained, and untrained women. Eur J Appl Physiol 101:577–585. doi: 10.1007/s00421-007-0532-6 PubMedCrossRefGoogle Scholar
  30. Petrella RJ, Cunningham DA, Vandervoort AA, Paterson DH (1989) Comparison of twitch potentiation in the gastrocnemius of young and elderly men. Eur J Appl Physiol 58:395–399. doi: 10.1007/BF00643515 CrossRefGoogle Scholar
  31. Rassier DE, MacIntosh BR (2000) Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res 33:499–508. doi: 10.1590/S0100-879X2000000500003 PubMedCrossRefGoogle Scholar
  32. Raudsepp L, Pääsuke M (1995) Gender differences in fundamental movement patterns, motor performances and strength measurements of prepubertal children. Pediatr Exerc Sci 7:294–304Google Scholar
  33. Requena B, Ereline J, Gapeyeva H, Pääsuke M (2005) Posttetanic potentiation in knee extensors at high-frequency submaximal percutaneous electrical stimulation. J Sport Rehabil 14:248–257Google Scholar
  34. Sale DG (2002) Postactivation potentiation: role in human performance. Exerc Sport Sci Rev 30:138–143. doi: 10.1097/00003677-200207000-00008 PubMedCrossRefGoogle Scholar
  35. Shima N, Rice CL, Ota Y, Yabe K (2006) The effect of postactivation potentiation on the mechanomyogram. Eur J Appl Physiol 96:17–23. doi: 10.1007/s00421-005-0053-0 PubMedCrossRefGoogle Scholar
  36. Sieck GC, Prakash YS (1995) Fatigue at the neuromuscular junction: branch point vs. presynaptic mechanisms. Adv Exp Med Biol 384:83–100PubMedGoogle Scholar
  37. Söderlund K, Greenhaff PL, Hultman E (1990) Energy metabolism in type I and type II human muscle fibers during short term electrical stimulation at different frequencies. Acta Physiol Scand 144:15–22CrossRefGoogle Scholar
  38. Stein RB, Parmiggiani F (1979) Optimal motor patterns for activating mammalian muscle. Brain Res 175:372–376. doi: 10.1016/0006-8993(79)91019-9 PubMedCrossRefGoogle Scholar
  39. Strojnik V (1995) Muscle activation level during maximal voluntary effort. Eur J Appl Physiol 72:144–149. doi: 10.1007/BF00964129 CrossRefGoogle Scholar
  40. Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol Cell Physiol 264:C1085–C1095Google Scholar
  41. Vandenboom R, Houston ME (1996) Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle. Can J Physiol Pharmacol 74:1315–1321. doi: 10.1139/cjpp-74-12-1315 PubMedCrossRefGoogle Scholar
  42. Vandenboom R, Xeni J, Bestic NM, Houston ME (1997) Increased force development rates of fatigued mouse skeletal muscle are graded to myosin light chain phosphate content. Am J Physiol 272:R1980–R1984PubMedGoogle Scholar
  43. Vandervoort AA, Quinlan J, McComas AJ (1983) Twitch potentiation after voluntary contraction. Exp Neurol 81:141–152. doi: 10.1016/0014-4886(83)90163-2 PubMedCrossRefGoogle Scholar
  44. Ward AR, Shkuratova N (2002) Russian electrical stimulation: the early experiments. Phys Ther 82:1019–1030PubMedGoogle Scholar
  45. Zhi G, Ryder JW, Huang J, Ding P, Chen Y, Zhao Y et al (2005) Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction. Proc Natl Acad Sci USA 48:17519–17524. doi: 10.1073/pnas.0506846102 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bernardo Requena
    • 1
    Email author
  • Helena Gapeyeva
    • 2
  • Inmaculada García
    • 1
  • Jaan Ereline
    • 2
  • Mati Pääsuke
    • 2
  1. 1.Laboratory of Human Performance, Faculty of SportUniversity of Pablo de OlavideSevillaSpain
  2. 2.Institute of Exercise Biology and PhysiotherapyUniversity of TartuTartuEstonia

Personalised recommendations