Skip to main content

Advertisement

Log in

Anaerobic performance and metabolism in boys and male adolescents

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Short-term maximum intensity performance, absolute and related to body mass, is lower in children than adolescents. The underlying mechanisms are not clear. We analysed Wingate Anaerobic Test (WAnT) performance and metabolism in ten boys (mean (SD); age 11.8 (0.5) years, height 1.51 (0.05) m, body mass 36.9 (2.5) kg, muscle mass 13.0 (1.0) kg) and 10 adolescents (16.3 (0.7) years, 1.81 (0.05) m, 67.3 (4.1) kg, 28.2 (1.7) kg). Related to body mass, power of flywheel acceleration (6.0 (1.6) vs. 8.1 (1.1) W kg−1), peak power (10.8 (0.7) vs. 11.5 (0.6) W kg−1), average power (7.9 (0.5) vs. 8.9 (0.7) W kg−1), minimum power (6.1 (0.7) vs. 6.9 (0.9) W kg−1) and anaerobic lactic energy (687.6 (75.6) vs. 798.2 (43.0) J kg−1) were lower (P < 0.05) in boys than in adolescents. Related to muscle mass the change in lactate (0.69 (0.08) vs. 0.69 (0.04) mmol kg −1MM  s−1) and PCr (0.60 (0.17) vs. 0.52 (0.10) mmol kg −1MM  s−1) were not different. The corresponding oxygen uptake (1.34 (0.13) vs. 1.09 (0.13) ml kg −1MM  s−1), total metabolic rate (132.4 (12.6) vs. 119.7 (8.5) W kg −1MM ) and PP (30.5 (2.6) vs. 27.5 (1.7 W) kg −1MM ) were higher (P < 0.01) in boys than in adolescents. The results reflect a lower relative muscle mass combined with no differences in muscular anaerobic but fascilitated aerobic metabolism in boys. Compared with adolescents, boys’ performance seemed to be significantly impaired by flywheel inertia but supported by identical brake force related to body mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Belanger AY, McComas AJ (1989) Contractile properties of human skeletal muscle in childhood and adoloscence. Eur J Appl Physiol 58:563–567

    Article  CAS  Google Scholar 

  • Bell RD, Mac Doughall JD, Billeter R, Howald H (1980) Muscle fiber types and morphometric analysis of skeletal muscle in 6 year old children. Med Sci Sports Exerc 12(1):28–31

    PubMed  CAS  Google Scholar 

  • Beneke R, Pollmann Ch, Bleif I, Leithäuser RM, Hütler M (2002) How anaerobic is the wingate anaerobic test for humans? Eur J Appl Physiol 87:388–392

    Article  PubMed  CAS  Google Scholar 

  • Beneke R, Hütler M, Jung M, Leithäuser RM (2005) Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents and adults. J Appl Physiol 99:499–504

    Article  PubMed  CAS  Google Scholar 

  • Berg A, Kim SS, Keul J (1986) Skeletal muscle enzyme activities in healthy young subjects. Int J Sports Med 7(4):236–239

    PubMed  CAS  Google Scholar 

  • Brooke MH, WK Engel (1969) The histographic analysis of human muscle biopsies with regard to fiber types: children´s biopsies. Neurology 19:591–605

    PubMed  CAS  Google Scholar 

  • Bouchard C, Thibault MC (1977) Jugend und Sport. Dtsch Z Sportmed 28:206–220

    Google Scholar 

  • Carlson JS, Naughton GA (1994) Performance characteristics of children using various braking resistances on the Wingate anaerobic test. J Sports Med Phys Fitness 34:362–369

    PubMed  CAS  Google Scholar 

  • Cooper DM (1995) New horizons in pediatric exercise research. In: Blimkie CR, Bar-Or (eds) New horizons in pediatric exercise science. Human Kinetics, Champaign, pp 1–24

    Google Scholar 

  • di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:144–222

    Google Scholar 

  • Donovan CM, Brooks GA (1983) Endurance training affects lactate clearance, not lactate production. Am J Physiol 244:E83–E92

    PubMed  CAS  Google Scholar 

  • Dore E, Bedu M, Franca NM, Diallo O, Duche P, V Praagh E (2000) Testing peak performance: effects of braking force during growth. Med Sci Sports Exerc 32(2):493–498

    Article  PubMed  CAS  Google Scholar 

  • Dotan R, Bar-Or O (1983) Load optimisation for the Wingate anaerobic test. Eur J Appl Physiol 51:409–417

    Article  CAS  Google Scholar 

  • Elder GCB, Kakular BA (1993) Histochemical and contractile property changes during human development. Muscle Nerve 16:1246–1253

    Article  PubMed  CAS  Google Scholar 

  • Eriksson BO, Karlsson J, Saltin B (1971) Muscle metabolites during exercise in pubertal boys. Acta Paediatr Scand 217:154–207

    CAS  Google Scholar 

  • Falgairette G, Bedu M, Fellmann N, van Praagh E, Coudert J (1991) Bioenergetic profile in 144 boys aged from 6 to 15 years with special reference to sexual maturation. Eur J Appl Physiol 62:151–156

    Article  CAS  Google Scholar 

  • Falk B, Bar Or O (1993) Longitudinal changes in peak aerobic and anaerobic mechanical power of circumpubertal boys. Ped Ex Sci 5:318–331

    Google Scholar 

  • Fournier M, Ricca J, Taylor AW, Ferguson RJ, Montpetit RR, Chaitman (1982) Skeletal muscle adaptation in adolescent boys: sprint and endurance training and detraining. Med Sci Sports Exerc 14(6):453–456

    PubMed  CAS  Google Scholar 

  • Gastin PB (2001) Energy system interaction and relative contribution during maximal exercise. Sports Med 13 (10):725–741

    Article  Google Scholar 

  • Gaul CA, Docherty D, Cicchini R (1995) Differences in anaerobic performance between boys and men. Int J Sports Med 16 (7):451–455

    Article  PubMed  CAS  Google Scholar 

  • Hebestreit H, Mimura KI, Bar-Or O (1993) Recovery of muscle power after high-intensity short-term exercise: comparing boys and men. J Appl Physiol 74:2875–2880

    PubMed  CAS  Google Scholar 

  • Hebestreit H, Meyer F, Heigenhauser GJ, Bar-Or O (1996) Plasma metabolites, volume and electrolytes following 30-s high-intensity exercise in boys and men. Eur J Appl Physiol 72(5–6):563–569

    Article  CAS  Google Scholar 

  • Hebestreit H, Kriemler S, Hughson RL, Bar-Or O (1998) Kinetics of oxygen uptake at the onset of exercise in boys and men. J Appl Physiol 85 (5):1833–1841

    PubMed  CAS  Google Scholar 

  • Heller J, Bunc V, Peric T (1998) Anaerobic performance in young adult ice hockey players. In: Jeschke D, Lorenz R (eds) Sportartspezifische Leistungsdiagnostik. Energetische Aspekte. Bundesinstitut für Sportwissenschaft. Köln, pp 217–222

    Google Scholar 

  • Inbar O, Bar-Or O (1986) Anaerobic characteristics in male children and adolescents. Med Sci Sports Exerc 18:264–269

    Article  PubMed  CAS  Google Scholar 

  • Inbar O, Bar-Or O, Skinner JS (1996) The Wingate anaerobic test. Human Kinetics, Champaign, pp 1–95

  • Kindermann W, Huber G, Keul J (1975) Anaerobe Kapazität bei Kindern und Jugendlichen in Beziehung zum Erwachsenen. Sportarzt Sportmed 6:112–115

    Google Scholar 

  • Kohler G, Boutellier U (2005) The generalized force–velocity relationship explains why the preferred pedalling rate of cyclists exceeds the most efficient one. Eur J Appl Physiol 94:188–195

    Article  PubMed  Google Scholar 

  • Knuttgen HG (1970) Oxygen debt after submaximal physical exercise. J Appl Physiol 29:651–657

    PubMed  CAS  Google Scholar 

  • Kuno S, Takahashi H, Fujimoto K, Akima H, Miyamaru M, Nemoto I (1995) Muscle metabolism during exercise using phosphorus-31 nuclear magnetic resonance spectroscopy in adolescents. Eur J Appl Physiol 70:301–304

    Article  CAS  Google Scholar 

  • Lakomy HKA (1986) Measurement of work and power output using friction-loades cycle ergometer. Ergonomics 29:509–517

    Article  PubMed  CAS  Google Scholar 

  • Lexell J, Sjoström M, Nordlund AS (1992) Growth development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve 15:404–409

    Article  PubMed  CAS  Google Scholar 

  • Macek M, Vavra J (1980) The adjustment of oxygen uptake at the onset of exercise: a comparison between prepubertal boys and young adults. Int J Sports Med 1:70–72

    Article  Google Scholar 

  • Malina RM, Bouchard C (2004) Growth, maturation, and physical activity. Human Kinetics, Champaign

    Google Scholar 

  • Mercier B, Mercier J, Granier P, LeGallais D, Prefaut Ch (1992) Maximal anaerobic power: relationship to anthropometric characteristics during growth. Int J Sports Med 13(1):21–26

    PubMed  CAS  Google Scholar 

  • Mero A (1988) Blood lactate production and recovery from anaerobic exercise in trained and untrained boys. Eur J Appl Physiol 57:660–666

    Article  CAS  Google Scholar 

  • Micklewright D, Alkhatib A, Beneke R (2006) Mechanically vs. electromagnetically braked cycle ergometer—performance and energy cost of the Wingate anaerobic test. Eur J Appl Physiol 96(6):748–751

    Article  PubMed  CAS  Google Scholar 

  • Oertel G (1988) Morphometric analysis of normal skeletal muscles in infancy, childhood and adolescence: an autopsy study. J Neurol Sci 88:303–313

    Article  PubMed  CAS  Google Scholar 

  • Paterson DH, Cunningham DA, Bumstead LA (1986) Recovery O2 and blood lactic acid: longitudinal analysis in boys aged 11 to 15 years. Eur J Appl Physiol 55:93–99

    Article  CAS  Google Scholar 

  • Petersen SR, Gaul CA, Stanton MM, Hanstock CC (1999) Skeletal muscle metabolism during short-term high-intensity exercise in prepubertal and pubertal girls. J Appl Physiol 87 (6):2151–2156

    PubMed  CAS  Google Scholar 

  • Roberts AD, Morton AR (1978) Total and alactic oxygen debts after supramaximal work. Eur J Appl Physiol 38:281–289

    Article  CAS  Google Scholar 

  • Robinson S (1938) Experimental studies of physical fitness in relation to age. Int Z Angew Physiol Arbeitsphysiol 10:251–323

    Google Scholar 

  • Serresse O, Lortie G, Bouchard C, Boulay MR (1988) Estimation of the contribution of the various energy systems during maximal work of short duration. Int J Sports Med 9(6):456–460

    PubMed  CAS  Google Scholar 

  • Spriet LL (1995) Anaerobic metabolism during high-intensity exercise. In: Hargreaves M (ed) Exercise metabolism. Human Kinetics, Champaign, pp 1–39

  • Stegemann J (1991) Leistungsphysiologie. Thieme Verlag. Stuttgart, New York, pp 57–59

  • Van Praagh E, Dore E (2002) Short-term muscle power during growth and maturation. Sports Med 32 (11):701–728

    Article  PubMed  Google Scholar 

  • Van Praagh E, Fellmann N, Bedu M, Falgairette G, Coudert J (1990) Gender difference in the relationship of anaerobic power output to body composition in children. Pediatr Exerc Sci 2:336–348

    Google Scholar 

  • Vogler C, Bove KE (1985) Morphology of skeletal muscles in children. Arch Pathol Lab Med 109:238–242

    PubMed  CAS  Google Scholar 

  • Zanconato S, Cooper DM, Armon Y (1991) Oxygen cost and oxygen uptake dynamics and recovery with 1 min of exercise in children and adults. J Appl Physiol 71:993–998

    PubMed  CAS  Google Scholar 

  • Zanconato S, Buchthal S, Barstow TJ, Cooper DM (1993) 31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. J Appl Physiol 74(5):2214–2218

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of M. Jung in subject recruitment and data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Beneke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beneke, R., Hütler, M. & Leithäuser, R.M. Anaerobic performance and metabolism in boys and male adolescents. Eur J Appl Physiol 101, 671–677 (2007). https://doi.org/10.1007/s00421-007-0546-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0546-0

Keywords

Navigation