European Journal of Applied Physiology

, Volume 100, Issue 2, pp 225–234 | Cite as

The effect of acute aerobic exercise on pulse wave velocity and oxidative stress following postprandial hypertriglyceridemia in healthy men

  • Conor M. Mc CleanEmail author
  • Jim Mc Laughlin
  • George Burke
  • Marie H. Murphy
  • Tom Trinick
  • Ellie Duly
  • Gareth W. Davison
Original Articles


Oxidative stress is postulated to be responsible for the postprandial impairments in vascular function. The purpose of this study was to measure pulse wave velocity (PWV) and markers of postprandial oxidative stress before and after an acute bout of moderate exercise. Ten trained male subjects (age 21.5 ± 2.5 years, VO2 max 58.5 ± 7.1 ml kg−1 min−1) participated in a randomised crossover design: (1) high-fat meal alone (2) high-fat meal followed 2 h later by a bout of 1 h moderate (60% max HR) exercise. PWV was examined at baseline, 1, 2, 3, and 4 h postprandially. Blood Lipid hydroperoxides (LOOHs), Superoxide dismutase (SOD) and other biochemical markers were measured. PWV increased at 1 h (6.49 ± 2.1 m s−1), 2 h (6.94 ± 2.4 m s−1), 3 h (7.25 ± 2.1 m s−1) and 4 h (7.41 ± 2.5 m s−1) respectively, in the control trial (P < 0.05). There was no change in PWV at 3 h (5.36 ± 1.1 m s−1) or 4 h (5.95 ± 2.3 m s−1) post ingestion in the exercise trial (P > 0.05). LOOH levels decreased at 3 h post ingestion in the exercise trial compared to levels at 3 h (P < 0.05) in the control trial. SOD levels were lower at 3 h post ingestion in the control trial compared to 3 h in the exercise trial (0.52 ± 0.05 vs. 0.41 ± 0.1 units μl−1; P < 0.05). These findings suggest that a single session of aerobic exercise can ameliorate the postprandial impairments in arterial function by possibly reducing oxidative stress levels.


Exercise Postprandial lipaemia Oxidative stress Vascular function Lipid hydroperoxides 



Coronary artery disease


Cholesterol esterase


Cholesterol oxidase


C-reactive protein


Co-efficient of variation




High density lipoprotein cholesterol


Honestly significant difference


Low-density cholesterol


Potassium ethylenediaminetetraacetic acid


Lipid hydroperoxides


Nitric oxide






Nitric oxide synthase


Endothelial NOS






Superoxide anion


Postprandial hypertriglyceridemia


Pulse wave velocity


Reactive oxygen species


Superoxide dismutase




  1. Altman DG (1980) Statistics and ethics in medical research: III how large a sample? Br Med J 281:1336–1338PubMedCrossRefGoogle Scholar
  2. Ashton T, Young IS, Davison GW, Rowlands CC, McEneny J, Van Blerk C, Jones E, Peters JR, Jackson SK (2003) Exercise-induced endotoxemia: the effect of ascorbic acid supplementation. Free Radic Biol Med 35:284–291PubMedCrossRefGoogle Scholar
  3. Bae JH, Bassenge E, Kim KB, Kim YN, Kim KS, Lee HJ, Moon KC, Lee MS, Park KY, Schwemmer M (2001) Postprandial hypertriglyceridemia impairs endothelial function by enhanced oxidant stress. Atherosclerosis 155:517–523PubMedCrossRefGoogle Scholar
  4. Blendea MC, Bard M, Sowers JR, Winer N (2005) High-fat meal impairs vascular compliance in a subgroup of young healthy subjects. Metabolism 54:1337–1344PubMedCrossRefGoogle Scholar
  5. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23:168–175PubMedCrossRefGoogle Scholar
  6. Borg GA (1973) Perceived exertion: a note on “history” and methods. Med Sci Sports 5:90–93PubMedGoogle Scholar
  7. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844PubMedGoogle Scholar
  8. Ceriello A, Taboga C, Tonutti L, Quagliaro L, Piconi L, Bais B, Da Ros R, Motz E (2002) Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation 106:1211–1218PubMedCrossRefGoogle Scholar
  9. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248PubMedGoogle Scholar
  10. Di Massimo C, Scarpelli P, Penco M, Tozzi-Ciancarelli MG (2004) Possible involvement of plasma antioxidant defences in training-associated decrease of platelet responsiveness in humans. Eur J Appl Physiol 91:406–412PubMedCrossRefGoogle Scholar
  11. Finaud J, Lac G, Filaire E (2006) Oxidative stress: relationship with exercise and training. Sports Med 36:327–358PubMedCrossRefGoogle Scholar
  12. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  13. Fukai T, Folz RJ, Landmesser U, Harrison DG (2002) Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 55:239–249PubMedCrossRefGoogle Scholar
  14. Gaenzer H, Sturm W, Neumayr G, Kirchmair R, Ebenbichler C, Ritsch A, Foger B, Weiss G, Patsch JR (2001) Pronounced postprandial lipemia impairs endothelium-dependent dilation of the brachial artery in men. Cardiovasc Res 52:509–516PubMedCrossRefGoogle Scholar
  15. Gewaltig MT, Kojda G (2002) Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc Res 55:250–260PubMedCrossRefGoogle Scholar
  16. Gill JM, Al-Mamari A, Ferrell WR, Cleland SJ, Packard CJ, Sattar N, Petrie JR, Caslake MJ (2004) Effects of prior moderate exercise on postprandial metabolism and vascular function in lean and centrally obese men. J Am Col Cardiol 44:2375–2382CrossRefGoogle Scholar
  17. Gill JM, Hardman AE (2003) Exercise and postprandial lipid metabolism: an update on potential mechanisms and interactions with high-carbohydrate diets (review). J Nutr Biochem 14:122–132PubMedCrossRefGoogle Scholar
  18. Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, Baither Y, Gielen S, Thiele H, Gummert JF, Mohr FW, Schuler G (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107:3152–3158PubMedCrossRefGoogle Scholar
  19. Heistad DD (2006) Oxidative stress and vascular disease: 2005 duff lecture. Arterioscler Thromb Vasc Biol 26:689–695PubMedCrossRefGoogle Scholar
  20. Hiramatsu K, Arimori S (1988) Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes 37:832–837PubMedCrossRefGoogle Scholar
  21. Kalinowski L, Malinski T (2004) Endothelial NADH/NADPH-dependent enzymatic sources of superoxide production: relationship to endothelial dysfunction. Acta Biochimica Polonica 51:459–469PubMedGoogle Scholar
  22. Kinlay S, Creager MA, Fukumoto M, Hikita H, Fang JC, Selwyn AP, Ganz P (2001) Endothelium-derived nitric oxide regulates arterial elasticity in human arteries in vivo. Hypertension 38:1049–1053PubMedGoogle Scholar
  23. Leopold JA, Loscalzo J (2005) Oxidative enzymopathies and vascular disease. Arterioscler Thromb Vasc Biol 25:1332–1340PubMedCrossRefGoogle Scholar
  24. Loffredo L, Pignatelli P, Cangemi R, Andreozzi P, Panico MA, Meloni V, Violi F (2006) Imbalance between nitric oxide generation and oxidative stress in patients with peripheral arterial disease: effect of an antioxidant treatment. J Vasc Surg 44:525–530PubMedCrossRefGoogle Scholar
  25. Maeda S, Tanabe T, Otsuki T, Sugawara J, Iemitsu M, Miyauchi T, Kuno S, Ajisaka R, Matsuda M (2004) Moderate regular exercise increases basal production of nitric oxide in elderly women. Hypertens Res 27:947–953PubMedCrossRefGoogle Scholar
  26. McLaughlin J, McNeill M, Braun B, McCormack PD (2003) Piezoelectric sensor determination of arterial pulse wave velocity. Physiol Meas 24:693–702PubMedCrossRefGoogle Scholar
  27. Naka KK, Tweddel AC, Parthimos D, Henderson A, Goodfellow J, Frenneaux MP (2003) Arterial distensibility: acute changes following dynamic exercise in normal subjects. Am J Physiol Heart Circ Physiol 284:970–978Google Scholar
  28. Padilla J, Harris RA, Fly AD, Rink LD, Wallace JP (2006) The effect of acute exercise on endothelial function following a high-fat meal. Eur J Appl Physiol 98:256–262PubMedCrossRefGoogle Scholar
  29. Roberts CK, Vaziri ND, Wang XQ, Barnard RJ (2000) Enhanced NO inactivation and hypertension induced by a high-fat, refined-carbohydrate diet. Hypertension 36:423–429PubMedGoogle Scholar
  30. Safar M, Chamiot-Clerc P, Dagher G, Renaud JF (2001) Pulse pressure, endothelium function, and arterial stiffness in spontaneously hypertensive rats. Hypertension 38:1416–1421PubMedGoogle Scholar
  31. Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478PubMedCrossRefGoogle Scholar
  32. Thompson PD, Buchner D, Pina IL, Balady GJ, Williams MA, Marcus BH, Berra K, Blair SN, Costa F, Franklin B, Fletcher GF, Gordon NF, Pate RR, Rodriguez BL, Yancey AK, Wenger NK, American Heart Association Council on Clinical Cardiology Subcommittee on Exercise, Rehabilitation, and Prevention, and American Heart Association Council on Nutrition, Physical Activity, and Metabolism Subcommittee on Physical Activity (2003) Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: A statement from the council on clinical cardiology (subcommittee on exercise, rehabilitation, and prevention) and the council on nutrition, physical activity, and metabolism (subcommittee on physical activity). Circulation 107:3109–3116Google Scholar
  33. Tsai WC, Li YH, Lin CC, Chao TH, Chen JH (2004) Effects of oxidative stress on endothelial function after a high-fat meal. Clin Sci 106:315–319PubMedCrossRefGoogle Scholar
  34. van Oostrom AJ, Sijmonsma TP, Verseyden C, Jansen EH, de Koning EJ, Rabelink TJ, Castro Cabezas M (2003) Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res 44:576–583PubMedCrossRefGoogle Scholar
  35. Walther C, Gielen S, Hambrecht R (2004) The effect of exercise training on endothelial function in cardiovascular disease in humans. Exerc Sport Sci Rev 32:129–134PubMedCrossRefGoogle Scholar
  36. Wang JS, Lee T, Chow SE (2006) Role of exercise intensities in oxidized low-density lipoprotein-mediated redox status of monocyte in men. J Appl Physiol 101:740–744PubMedCrossRefGoogle Scholar
  37. Wilkinson IB, Qasem A, McEniery CM, Webb DJ, Avolio AP, Cockcroft JR (2002) Nitric oxide regulates local arterial distensibility in vivo. Circulation 105:213–217PubMedCrossRefGoogle Scholar
  38. Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189CrossRefGoogle Scholar
  39. Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186PubMedCrossRefGoogle Scholar
  40. Zhang JQ, Thomas TR, Ball SD (1998) Effect of exercise timing on postprandial lipemia and HDL cholesterol subfractions. J Appl Physiol 85:1516–1522PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Conor M. Mc Clean
    • 1
    Email author
  • Jim Mc Laughlin
    • 2
  • George Burke
    • 2
  • Marie H. Murphy
    • 1
  • Tom Trinick
    • 3
  • Ellie Duly
    • 3
  • Gareth W. Davison
    • 1
  1. 1.Sport and Exercise Sciences Research Institute, School of Sports StudiesUniversity of UlsterNewtownabbeyUK
  2. 2.School of Electrical and Mechanical EngineeringUniversity of Ulster JordanstownNewtownabbeyUK
  3. 3.Department of MedicineUlster HospitalDundonaldUK

Personalised recommendations