European Journal of Applied Physiology

, Volume 100, Issue 2, pp 193–205 | Cite as

Normo or hypobaric hypoxic tests: propositions for the determination of the individual susceptibility to altitude illnesses

  • Gustave SavoureyEmail author
  • Jean-Claude Launay
  • Yves Besnard
  • Angélique Guinet-Lebreton
  • Antonia Alonso
  • Fabien Sauvet
  • Cyprien Bourrilhon
Original Article


Assessment of individual susceptibility to altitude illnesses and more particularly to acute mountain sickness (AMS) by means of tests performed in normobaric hypoxia (NH) or in hypobaric hypoxia (HH) is still debated. Eighteen subjects were submitted to HH and NH tests (PIO2=120 hPa, 30 min) before an expedition. Maximal and mean acute mountain sickness scores (AMSmax and mean) were determined using the self-report Lake Louise questionnaire scored daily. Cardio-ventilatory (f, VT, PetO2 and PetCO2, HR and finger pulse oxymetry SpO2) were measured at times 5 and 30 min of the tests. Arterial (PaO2, PaCO2, pH, SaO2) and capillary haemoglobin (Hb) measurements were performed at times 30 min. Hypoxic ventilatory (HVR) and cardiac (HCR) responses, peripheral O2 blood content (CpO2) were calculated. A significant time effect is found for ΔSpO2 (P = 0.04). Lower PaCO2 (P = 0.005), SaO2 (P = 0.07) and higher pH (P = 0.02) are observed in HH compared to NH. AMSmax varied from 3 to12 and AMSmean between 0.6 and 3.5. In NH at 30 min, AMSmax is related to PetO2 (R = 0.61, P = 0.03), CpO2 (R = −0.53, P = 0.02) and in HH to CpO2 (R = −0.57, P = 0.01). In NH, AMSmean is related to Δf (R = 0.46, P = 0.05), HCR (R = 0.49, P = 0.04), CpO2 (R = −0.51, P = 0.03) and, in HH at 30 min, to VT (R = 0.69, P = 0.01) and a tendency for CpO2 (R = −0.43, P = 0.07). We conclude that HH and NH tests are physiologically different and they must last 30 min. CpO2 is an important variable to predict AMS. For practical considerations, NH test is proposed to quantify AMS individual susceptibility using the formulas: AMSmax = 9.47 + 0.104PetO2(hPa)–0.68CpO2 (%), (R = 0.77, P = 0.001); and AMSmean = 3.91 + 0.059Δf + 0.438HCR–0.135CpO2 (R = 0.71, P = 0.017).


Hypoxic tests Hypoxia Acute mountain sickness Altitude illnesses 



The contributions of subjects, especially the subjects of the Mountain Club of the ESSA LYON-BRON (Peru expedition) and the subjects participating in the expedition to Mera Peak, are acknowledged as well as the technical assistance of L. Vachez-Collomb, N. Piccarreta, J. Denis, N. Clerc and V. Leroux. We particularly thank Dr. P. Arvers for his important contribution for the revision of the statistical analysis.


  1. Bärtsch P, Swenson ER, Paul A, Jülg B, Hohenhaus E (2002) Hypoxic ventilatory response, ventilation, gas exchange, and fluid balance in acute mountain sickness. High Alt Med Biol 3(4):361–376PubMedCrossRefGoogle Scholar
  2. Bärtsch P, Bailey DM, Berger MM, Knauth M, Baumgartner RW (2004) Acute mountain sickness: controversies and advances. High Alt Med Biol 5(2):110–124PubMedCrossRefGoogle Scholar
  3. Du Bois D, Du Bois EF (1916) Clinical calorimetry. Tenth paper: a formula to estimate the approximate area if height and weight be known. Arch Intern Med 17:863–871Google Scholar
  4. Ge RL, Matsuzawa Y, Takeoka M, Kubo K, Sekiguchi M, Kobayashi T (1997) Low pulmonary diffusing capacity in subjects with acute mountain sickness. Chest 111(1):58–64PubMedGoogle Scholar
  5. Hackett PH (1999) The cerebral etiology of high-altitude cerebral edema and acute mountain sickness. Wilderness Environ Med 10(2):97–109PubMedGoogle Scholar
  6. Hackett PH, Rennie D, Hofmeister SE, Grover RF, Grover EB, Reeves JT (1982) Fluid retention and relative hypoventilation in acute mountain sickness. Respiration 43(5):321–329PubMedGoogle Scholar
  7. Hirata K, Matsuyama S, Saito A (1989) Obesity as a risk factor for acute mountain sickness. Lancet 2(8670):1040–1041PubMedCrossRefGoogle Scholar
  8. Hohenhaus E, Paul A, McCullough RE, Kücherer H, and Bärtsch P (1995) Ventilatory and pulmonary vascular response to hypoxia and susceptibility to high altitude pulmonary oedema. Eur Respir J 8(11):1825–1833PubMedCrossRefGoogle Scholar
  9. Hu ST, Huang WY, Chu SC, Pa CF (1982) Chemoreflexive ventilatory response at sea level in subjects with past history of good acclimatization and severe acute mountain sickness. In: Brendel W, Zink RA (eds) High altitude physiology and medecine. Springer, New York, pp 28–32Google Scholar
  10. Hyers TM, Scoggin CH, Will DH, Grover RF, Reeves JT (1979) Accentuated hypoxemia at high altitude in subjects susceptible to high-altitude pulmonary edema. J Appl Physiol 46(1):41–46PubMedGoogle Scholar
  11. Kayser B (1991) Acute mountain sickness in western tourists around the Thorong pass (5400 m) in Nepal. J Wilderness Med 2:110–117Google Scholar
  12. King AB, Robinson SM (1972) Ventilation response to hypoxia and acute mountain sickness. Aerosp Med 43(4):419–421PubMedGoogle Scholar
  13. Lanfranchi PA, Colombo R, Cremona G, Baderna P, Spagnolatti L, Mazzuero G, Wagner P, Perini L, Wagner P, Perini L, Wagner H, Cavallaro C, Giannuzzi P (2005) Autonomic cardiovascular regulation in subjects with acute mountain sickness. Am J Physiol Heart Circ Physiol 289(6):H2364–H2372PubMedCrossRefGoogle Scholar
  14. Loeppky JA, Icenogle MV, Maes D, Riboni K, Hinghofer-Szalkay H, Roach RC (2005) Early fluid retention and severe acute mountain sickness. J Appl Physiol 98(2):591–597PubMedCrossRefGoogle Scholar
  15. Lohman TG, Boileau RA, Massey BH (1975) Prediction of lean body mass in young boys from skinfold thickness and body weight. Hum Biol 45:245–262Google Scholar
  16. Mathew L, Gopinathan PM, Purkayastha SS, Sen Gupta JS, Nayar HS (1983) Chemoreceptor sensitivity and mal adaptation to high altitude in man. Eur J Physiol 51(1):137–144CrossRefGoogle Scholar
  17. Milledge JS, Thomas PS, Beeley JM, English JSC (1988) Hypoxic ventilatory response and acute mountain sickness. Eur Respir J 1(10):948–951PubMedGoogle Scholar
  18. Milledge JS, Beeley JM, Broome J, Luff N, Pelling M, Smith D (1991) Acute mountain sickness susceptibility, fitness, and hypoxic ventilatory response. Eur Respir J 4(8):1000–1003PubMedGoogle Scholar
  19. Moore LG, Harisson GL, McCullough RE, McCullough RG, Micco AJ, Tucker A, Weil JV, Reeves JT (1986) Low acute hypoxic ventilatory response and hypoxic depression in acute altitude sickness. J Appl Physiol 60(4):1407–1412PubMedGoogle Scholar
  20. Rathat C, Richalet JP, Herry JP, Larmignat P (1992) Detection of high-risk subjects for high altitude diseases. Int J Sports Med 13(Suppl 1):S76–S78PubMedGoogle Scholar
  21. Richalet JP, Keromes A, Dersch B, Corrizi F, Medhioui H, Pophillat B, Chardonnet H, Tassery F, Herry JP, Rathat C, Chaduteau C, Darnaud B (1988) Caractéristiques physiologiques des alpinistes de haute altitude. Sci Sport 3:89–108CrossRefGoogle Scholar
  22. Roach RC, Bärtsch P, Hackett PH, Oelz O (1993) The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Coates G, Houston C (eds) Hypoxia and molecular medicine, Lake Louise, Alberta, Canada. Queen City Printers, Burlington, pp 272–274Google Scholar
  23. Roach RC, Loeppky JA, Icenogle MV (1996) Acute mountain sickness: increased severity during simulated altitude compared with normobaric hypoxia. J Appl Physiol 81(5):1908–1910PubMedGoogle Scholar
  24. Robinson SM, King AB, Aoki V (1971) Acute mountain sickness: reproducibility of its severity and duration in an individual. Aerosp Med 42:706–708PubMedGoogle Scholar
  25. Savourey G, Moirant C, Eterradossi J, Bittel J (1995a) Acute mountain sickness relates to sea-level partial pressure of oxygen. Eur J Appl Physiol 70(6):469–476CrossRefGoogle Scholar
  26. Savourey G, Guinet A, Besnard Y, Garcia N, Hanniquet AM, Bittel J (1995b) Evaluation of the Lake Louise acute mountain sickness scoring system in a hypobaric chamber. Aviat Space Environ Med 66(10):963–967PubMedGoogle Scholar
  27. Savourey G, Guinet A, Besnard Y, Garcia N, Hanniquet AM, Bittel J (1997) Are the laboratory and field conditions observations of acute mountain sickness related? Evaluation of the Lake Louise acute mountain sickness scoring system in a hypobaric chamber. Aviat Space Environ Med 68(10):895–899PubMedGoogle Scholar
  28. Savourey G, Launay JC, Besnard Y, Guinet A, Travers S (2003) Normo- and hypobaric hypoxia : are there any physiological differences? Eur J Appl Physiol 89(2):122–126PubMedGoogle Scholar
  29. Singh I, Khanna PK, Srivastava MC, Lal M, Roy SB, Subramanyam CS (1969) Acute mountain sickness. N Engl J Med 280(4):175–184PubMedCrossRefGoogle Scholar
  30. Sutton JR, Bryan AC, Gray GW, Horton ES, Rebuck AS, Woodley W, Rennie ID, Houston CS (1976) Pulmonary gas exchange in acute mountain sickness. Aviat Space Environ Med 47(10):1032–1037PubMedGoogle Scholar
  31. Viswanathan R, Subramanian S, Lodi ST, Radha TG (1978) Further studies of pulmonary oedema of high altitude. Abnormal responses to hypoxia of men who had developed pulmonary oedema at high altitude. Respiration 36(4):216–222PubMedCrossRefGoogle Scholar
  32. Ward P, Milledge JS, West JB (2000) Acute mountain sickness. In: High altitude medicine and physiology. Arnold Edts, London, pp 215–231Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Gustave Savourey
    • 1
    Email author
  • Jean-Claude Launay
    • 1
  • Yves Besnard
    • 1
  • Angélique Guinet-Lebreton
    • 1
  • Antonia Alonso
    • 1
  • Fabien Sauvet
    • 1
  • Cyprien Bourrilhon
    • 2
  1. 1.Département des Facteurs humains, Pôle tolérance climatique et vêtementCentre de recherches du service de santé des arméesLa Tronche cedexFrance
  2. 2.Institut de médecine aérospatiale du service de santé des arméesBrétigny sur Orge cedexFrance

Personalised recommendations