Advertisement

European Journal of Applied Physiology

, Volume 98, Issue 3, pp 263–269 | Cite as

Response of antioxidant defences to oxidative stress induced by prolonged exercise: antioxidant enzyme gene expression in lymphocytes

  • Nuria Cases
  • Antoni Sureda
  • Isabel Maestre
  • Pedro Tauler
  • Antoni Aguiló
  • Alfredo Córdova
  • Enrique Roche
  • Josep A. Tur
  • Antoni Pons
Original Article

Abstract

The response of lymphocyte and plasma antioxidant defences to a prolonged exercise as a cycling stage in a professional race was analysed. Antioxidant enzyme activities and gene expression, carbonyl derivative and MDA levels were determined in lymphocytes. Plasma levels of vitamin E, carotenes, protein carbonyl derivatives and the test d-Roms were measured. Significant increases in plasmatic carbonyls and in the test d-Roms were observed after the cycling stage. No significant differences were found in the lymphocyte MDA and carbonyl derivative levels. A significant increase was found in plasma vitamin E concentration after the cycling stage; however, the lymphocyte vitamin E concentration did not change. Significant increases were observed in lymphocyte total superoxide dismutase (SOD) activity and in the levels of CuZn-SOD and Mn-SOD isoenzymes. The moderate levels of oxidative stress in the lymphocyte induced a cellular adaptation to exercise enough to counteract the negative effects of oxidative stress.

Keywords

Cycling Oxidative stress Lymphocytes Antioxidants 

Notes

Acknowledgments

This work has been granted aid by the Spanish Ministry of Health (Programme of Promotion of Biomedical Research and Health Sciences, Project PI021593), the Spanish Ministry of Science and Education (DEP2005-00238-C04-02/EOU) and the FEDER funding.

References

  1. Aebi HE (1984) Catalase. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Verlag Chemie, Basel, pp 273–286Google Scholar
  2. Aguilo A, Tauler P, Fuentespina E, Tur JA, Cordova A, Pons A (2005) Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 84:1–7CrossRefPubMedGoogle Scholar
  3. Alessio HM (1993) Exercise-induced oxidative stress. Med Sci Sports Exerc 25:218–224PubMedGoogle Scholar
  4. Boyum A (1964) Separation of white blood cells. Nature 204:793–794CrossRefPubMedGoogle Scholar
  5. Burtis CA, Ashwood E (1984) Tietz textbook of clinical chemistry. WB Saunders, PhiladelphiaGoogle Scholar
  6. Cannon J, Blumberg JB (2000) Acute phase immune response in exercise. In: Sen CK, Packer L, Hänninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam, pp 177–194CrossRefGoogle Scholar
  7. Cases N, Aguilo A, Tauler P, Sureda A, Llompart I, Pons A, Tur JA (2005) Differential response of plasma and immune cell’s vitamin E levels to physical activity and antioxidant vitamin supplementation. Eur J Clin Nutr 59:781–788CrossRefPubMedGoogle Scholar
  8. Cesarone MR, Belcaro G, Carratelli M, Cornelli U, De Sanctis MT, Incandela L, Barsotti A, Terranova R, Nicolaides A (1999) A simple test to monitor oxidative stress. Int Angiol 18:127–130PubMedGoogle Scholar
  9. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121CrossRefPubMedGoogle Scholar
  10. Gleeson M, Nieman DC, Pedersen BK (2004) Exercise, nutrition and immune function. In: Maughan RJ, Burke LM, Coyle EF (eds) Food, nutrition and sports performance II. Rouledge, London, pp 186–203Google Scholar
  11. Goldberg DM, Spooner RJ (1985) Glutathione Reductase. In: Bergmeyer HU (eds) Methods in enzymatic analysis. Verlag Chemie, Basel, pp 258–265Google Scholar
  12. Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120CrossRefPubMedGoogle Scholar
  13. Hollander J, Fiebig R, Gore M, Ookawara T, Ohno H, Ji LL (2001) Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflugers Arch 442:426–434CrossRefPubMedGoogle Scholar
  14. Jackson MJ (1999) Free radicals in skin and muscle: damaging agents or signals for adaptation? Proc Nutr Soc 58:673–676CrossRefPubMedGoogle Scholar
  15. Ji L (1999) Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 222:283–292CrossRefPubMedGoogle Scholar
  16. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357PubMedGoogle Scholar
  17. McArdle F, Pattwell DM, Vasilaki A, McArdle A, Jackson MJ (2005) Intracellular generation of reactive oxygen species by contracting skeletal muscle cells. Free Radic Biol Med 39:651–657CrossRefPubMedGoogle Scholar
  18. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  19. Mooren FC, Bloming D, Lechtermann A, Lerch MM, Volker K (2002) Lymphocyte apoptosis after exhaustive and moderate exercise. J Appl Physiol 93:147–153PubMedGoogle Scholar
  20. Nieman DC (1994) Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc 26:128–139CrossRefPubMedGoogle Scholar
  21. Niess AM, Passek F, Lorenz I, Schneider EM, Dickhuth HH, Northoff H, Fehrenbach E (1999) Expression of the antioxidant stress protein heme oxygenase-1 (HO-1) in human leukocytes. Free Radic Biol Med 26:184–192CrossRefPubMedGoogle Scholar
  22. Packer L (1997) Oxidants, antioxidant nutrients and the athlete. J Sports Sci 15:353–363CrossRefPubMedGoogle Scholar
  23. Packer L, Almada AL, Rothfuss LM, Wilson DS (1989) Modulation of tissue vitamin E levels by physical exercise. Ann N Y Acad Sci 570:311–321CrossRefPubMedGoogle Scholar
  24. Reid MB, Shoji T, Moody MR, Entman ML (1992) Reactive oxygen in skeletal muscle II. Extracellular release of free radicals. J Appl Physiol 73:1805–1809PubMedGoogle Scholar
  25. Sjodin B, Hellsten Westing Y, Apple FS (1990) Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med 10:236–254PubMedCrossRefGoogle Scholar
  26. Sureda A, Tauler P, Aguilo A, Cases N, Fuentespina E, Cordova A, Tur JA, Pons A (2005) Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic Res 39:1317–1324CrossRefPubMedGoogle Scholar
  27. Suzuki K, Ohno H, Oh-ishi S, Kizaki T, Ookawara T, Fujii J, Radák Z, Taniguchi N (2000) Superoxide dismutases in exercise and disease. In: Sen C, Parker L, Hänninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam, pp 243–295CrossRefGoogle Scholar
  28. Tauler P, Aguilo A, Fuentespina E, Tur JA, Pons A (2002) Diet supplementation with vitamin E, vitamin C and beta-carotene cocktail enhances basal neutrophil antioxidant enzymes in athletes. Pflugers Arch 443:791–797CrossRefPubMedGoogle Scholar
  29. Tauler P, Aguilo A, Gimeno I, Guix P, Tur JA, Pons A (2004) Different effects of exercise tests on the antioxidant enzyme activities in lymphocytes and neutrophils. J Nutr Biochem 15:479–484CrossRefPubMedGoogle Scholar
  30. Tauler P, Aguilo A, Gimeno I, Noguera A, Agusti A, Tur JA, Pons A (2003) Differential response of lymphocytes and neutrophils to high intensity physical activity and to vitamin C diet supplementation. Free Radic Res 37:931–938CrossRefPubMedGoogle Scholar
  31. Tauler P, Sureda A, Cases N, Aguilo A, Rodríguez-Marroyo JA, Villa G, Tur JA, Pons A (2005) Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. J Nutr Biochem (In press)Google Scholar
  32. Thompson D, Basu-Modak S, Gordon M, Poore S, Markovitch D, Tyrrell RM (2005) Exercise-induced expression of heme oxygenase-1 in human lymphocytes. Free Radic Res 39:63–69CrossRefPubMedGoogle Scholar
  33. Tietz N (1999) Clinical guide to laboratory tests. WB Saunders, PhiladelphiaGoogle Scholar
  34. Vider J, Laaksonen DE, Kilk A, Atalay M, Lehtmaa J, Zilmer M, Sen CK (2001) Physical exercise induces activation of NF-kappaB in human peripheral blood lymphocytes. Antioxid Redox Signal 3:1131–1137CrossRefPubMedGoogle Scholar
  35. Wang JS, Huang YH (2005) Effects of exercise intensity on lymphocyte apoptosis induced by oxidative stress in men. Eur J Appl Physiol 12:1–8Google Scholar
  36. Weeks I, Woodhead JS (1984) Chemiluminiscence assays. J Clin Immunoassay 7:82–89Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Nuria Cases
    • 1
    • 2
  • Antoni Sureda
    • 1
    • 2
  • Isabel Maestre
    • 3
  • Pedro Tauler
    • 1
    • 2
  • Antoni Aguiló
    • 2
    • 4
  • Alfredo Córdova
    • 5
  • Enrique Roche
    • 3
  • Josep A. Tur
    • 1
    • 2
  • Antoni Pons
    • 1
    • 2
  1. 1.Departament de Biologia Fonamental i Ciències de la Salut, Edifici Guillem ColomUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Laboratori de Ciències de l’Activitat Física, Edifici Guillem ColomUniversitat de les Illes BalearsPalma de MallorcaSpain
  3. 3.Departamento de Biología Aplicada-NutriciónUniversidad Miguel HernándezAlicanteSpain
  4. 4.Departament d’Infermeria i Fisioteràpia, Edifici Beatriu de PinósUniversitat de les Illes BalearsPalma de MallorcaSpain
  5. 5.Departamento de Fisiología y BioquímicaEscuela Universitaria de Fisioterapia. Universidad de ValladolidSoriaSpain

Personalised recommendations