European Journal of Applied Physiology

, Volume 97, Issue 6, pp 706–715

Strength, size and activation of knee extensors followed during 8 weeks of horizontal bed rest and the influence of a countermeasure

  • E. R. Mulder
  • D. F. Stegeman
  • K. H. L. Gerrits
  • M. I. Paalman
  • J. Rittweger
  • D. Felsenberg
  • A. de Haan
Original Article

Abstract

Changes in the quadriceps femoris muscle with respect to anatomical cross sectional area (CSA), neural activation level and muscle strength were determined in 18 healthy men subjected to 8 weeks of horizontal bed rest (BR) with (n = 9) and without (n = 9) resistive vibration exercise (RVE). CSA of the knee extensor muscle group was measured with magnetic resonance imaging every 2 weeks during bed rest. In the control subjects (Ctrl), quadriceps femoris CSA decreased linearly over the 8 weeks of bed rest to −14.1 ± 5.2% (P < 0.05). This reduction was significantly (P < 0.001) mitigated by the exercise paradigm (−3.5 ± 4.2%; P < 0.05). Prior to and seven times during bed rest, maximal unilateral voluntary torque (MVT) values of the right leg were measured together with neural activation levels by means of a superimposed stimulation technique. For Ctrl, MVT decreased also linearly over time to −16.8 ± 7.4% after 8 weeks of bed rest (P < 0.01), whereas the exercise paradigm fully maintained MVT during bed rest. In contrast to previous reports, the maximal voluntary activation remained unaltered for both groups throughout the study. For Ctrl, the absence of deterioration of the activation level might have been related to the repeated testing of muscle function during the bed rest. This notion was supported by the observation that for a subset of Ctrl subjects (n = 5) the MVT of the left leg, which was not tested during BR, was reduced by 20.5 ± 10.1%, (P < 0.01) which was for those five subjects significantly (P < 0.05) more than the 11.1 ± 9.2% (P < 0.01) reduction for the right, regularly tested leg.

Keywords

bed rest Maximum voluntary torque Voluntary activation Atrophy Countermeasure 

References

  1. Adams GR, Caiozzo VJ, Baldwin KM (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95:2185–2201PubMedGoogle Scholar
  2. Akima H, Kubo K, Kanehisa H, Suzuki Y, Gunji A, Fukunaga T (2000) Leg-press resistance training during 20 days of 6 degrees head-down-tilt bed rest prevents muscle deconditioning. Eur J Appl Physiol 82:30–38PubMedCrossRefGoogle Scholar
  3. Alkner BA, Tesch PA (2004a) Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur J Appl Physiol 93:294–305CrossRefGoogle Scholar
  4. Alkner BA, Tesch PA (2004b) Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest. Acta Physiol Scand 181:345–357CrossRefGoogle Scholar
  5. Andersen JL, Gruschy-Knudsen T, Sandri C, Larsson L, Schiaffino S (1999) Bed rest increases the amount of mismatched fibers in human skeletal muscle. J Appl Physiol 86:455–460PubMedGoogle Scholar
  6. Antonutto G, Capelli C, Girardis M, Zamparo P, di Prampero PE (1999) Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol 86:85–92PubMedGoogle Scholar
  7. Bamman MM, Clarke MS, Feeback DL, Talmadge RJ, Stevens BR, Lieberman SA, Greenisen MC (1998) Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J Appl Physiol 84:157–163PubMedGoogle Scholar
  8. Berg HE, Larsson L, Tesch PA (1997) Lower limb skeletal muscle function after 6 wk of bed rest. J Appl Physiol 82:182–188PubMedCrossRefGoogle Scholar
  9. Convertino VA, Doerr DF, Mathes KL, Stein SL, Buchanan P (1989) Changes in volume, muscle compartment, and compliance of the lower extremities in man following 30 days of exposure to simulated microgravity. Aviat Space Environ Med 60:653–658PubMedGoogle Scholar
  10. de Ruiter CJ, Van Raak SM, Schilperoort JV, Hollander AP, de Haan A (2003) The effects of 11 weeks whole body vibration training on jump height, contractile properties and activation of human knee extensors. Eur J Appl Physiol 90:595–600PubMedCrossRefGoogle Scholar
  11. Deschenes MR, Giles JA, McCoy RW, Volek JS, Gomez AL, Kraemer WJ (2002) Neural factors account for strength decrements observed after short-term muscle unloading. Am J Physiol Regul Integr Comp Physiol 282:R578–R583PubMedGoogle Scholar
  12. Duchateau J, Hainaut K (1987) Electrical and mechanical changes in immobilized human muscle. J Appl Physiol 62:2168–2173PubMedGoogle Scholar
  13. Duchateau J (1995) Bed rest induces neural and contractile adaptations in triceps surae. Med Sci Sports Exerc 27:1581–1589PubMedGoogle Scholar
  14. Edgerton VR, Zhou MY, Ohira Y, Klitgaard H, Jiang B, Bell G, Harris B, Saltin B, Gollnick PD, Roy RR, Kay MK, Greenisen M (1995) Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J Appl Physiol 78:1733–1739PubMedGoogle Scholar
  15. Ferrando AA, Tipton KD, Bamman MM, Wolfe RR (1997) Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J Appl Physiol 82:807–810PubMedGoogle Scholar
  16. Ferretti G, Berg HE, Minetti AE, Moia C, Rampichini S, Narici MV (2001) Maximal instantaneous muscular power after prolonged bed rest in humans. J Appl Physiol 90:431–435PubMedGoogle Scholar
  17. Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204:3201–3208PubMedGoogle Scholar
  18. Gondin J, Guette M, Maffiuletti NA, Martin A (2004) Neural activation of the triceps surae is impaired following 2 weeks of immobilization. Eur J Appl Physiol 93:359–365PubMedCrossRefGoogle Scholar
  19. Hather BM, Adams GR, Tesch PA, Dudley GA (1992) Skeletal muscle responses to lower limb suspension in humans. J Appl Physiol 72:1493–1498PubMedGoogle Scholar
  20. Ikai M, Fukunaga T (1968) Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol 26:26–32PubMedGoogle Scholar
  21. Kawakami Y, Akima H, Kubo K, Muraoka Y, Hasegawa H, Kouzaki M, Imai M, Suzuki Y, Gunji A, Kanehisa H, Fukunaga T (2001) Changes in muscle size, architecture, and neural activation after 20 days of bed rest with and without resistance exercise. Eur J Appl Physiol 84:7–12PubMedCrossRefGoogle Scholar
  22. Kubo K, Akima H, Kouzaki M, Ito M, Kawakami Y, Kanehisa H, Fukunaga T (2000) Changes in the elastic properties of tendon structures following 20 days bed-rest in humans. Eur J Appl Physiol 83:463–468PubMedCrossRefGoogle Scholar
  23. Larsson L, Li X, Berg HE, Frontera WR (1996) Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells. Pflugers Arch 432:320–328PubMedCrossRefGoogle Scholar
  24. LeBlanc AD, Schneider VS, Evans HJ, Pientok C, Rowe R, Spector E (1992) Regional changes in muscle mass following 17 weeks of bed rest. J Appl Physiol 73:2172–2178PubMedGoogle Scholar
  25. LeBlanc A, Rowe R, Schneider V, Evans H, Hedrick T (1995) Regional muscle loss after short duration spaceflight. Aviat Space Environ Med 66:1151–1154PubMedGoogle Scholar
  26. Ploutz-Snyder LL, Tesch PA, Hather BM, Dudley GA (1996) Vulnerability to dysfunction and muscle injury after unloading. Arch Phys Med Rehabil 77:773–777PubMedCrossRefGoogle Scholar
  27. Prou E, Marini JF (1997) Muscle research in space–increased muscle susceptibility to exercise-induced damage after a prolonged bedrest. Int J Sports Med 4(18 Suppl):S317–S320CrossRefGoogle Scholar
  28. Reeves NJ, Maganaris CN, Ferretti G, Narici MV (2002) Influence of simulated microgravity on human skeletal muscle architecture and function. J Gravit Physiol 9:153–154Google Scholar
  29. Rittweger J, Beller G, Felsenberg D (2000) Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol 20:134–142PubMedCrossRefGoogle Scholar
  30. Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P, Felsenberg D (2005) Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 36:1019–1029PubMedCrossRefGoogle Scholar
  31. Rittweger J, Belavy D, Hunek P, Gast U, Boerst H, Feilcke B, Armbrecht G, Mulder E, Schubert H, Richardson C, de Haan A, Stegeman D, Schiessl H, Felsenberg D (2006) Highly demanding resistive vibration exercise program is tolerated during 56 days of strict bed-rest. Int J Sports MedGoogle Scholar
  32. Roelants M, Delecluse C, Verschueren SM (2004) Whole-body-vibration training increases knee-extension strength and speed of movement in older women. J Am Geriatr Soc 52:901–908PubMedCrossRefGoogle Scholar
  33. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604PubMedCrossRefGoogle Scholar
  34. Schneider SM, Amonette WE, Blazine K, Bentley J, Lee SM, Loehr JA, Moore AD, Jr., Rapley M, Mulder ER, Smith SM (2003) Training with the International Space Station interim resistive exercise device. Med Sci Sports Exerc 35:1935–1945PubMedCrossRefGoogle Scholar
  35. Shackelford LC, LeBlanc AD, Driscoll TB, Evans HJ, Rianon NJ, Smith SM, Spector E, Feeback DL, Lai D (2004) Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol 97:119–129PubMedCrossRefGoogle Scholar
  36. Torvinen S, Kannus P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Nenonen A, Jarvinen TL, Paakkala T, Jarvinen M, Vuori I (2003) Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res 18:876–884PubMedCrossRefGoogle Scholar
  37. Trappe SW, Trappe TA, Lee GA, Widrick JJ, Costill DL, Fitts RH (2001) Comparison of a space shuttle flight (STS-78) and bed rest on human muscle function. J Appl Physiol 91:57–64PubMedGoogle Scholar
  38. Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 19:352–359PubMedCrossRefGoogle Scholar
  39. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19:360–369PubMedCrossRefGoogle Scholar
  40. Zange J, Muller K, Schuber M, Wackerhage H, Hoffmann U, Gunther RW, Adam G, Neuerburg JM, Sinitsyn VE, Bacharev AO, Belichenko OI (1997) Changes in calf muscle performance, energy metabolism, and muscle volume caused by long-term stay on space station MIR. Int J Sports Med 4 (18 Suppl):S308–S309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • E. R. Mulder
    • 1
    • 2
  • D. F. Stegeman
    • 1
    • 2
    • 3
  • K. H. L. Gerrits
    • 1
    • 3
  • M. I. Paalman
    • 3
  • J. Rittweger
    • 4
    • 5
  • D. Felsenberg
    • 4
  • A. de Haan
    • 1
    • 3
    • 5
  1. 1.Institute for Fundamental and Clinical Human Movement SciencesAmsterdamThe Netherlands
  2. 2.918 Department of Clinical Neurophysiology, Institute of NeurologyRadboud University Nijmegen Medical CentreHB, NijmegenThe Netherlands
  3. 3.Faculty of Human Movement SciencesVrije UniversityAmsterdamThe Netherlands
  4. 4.Center for Muscle and Bone researchCharité-Campus Benjamin FranklinBerlinGermany
  5. 5.Institute for Biophysical and Clinical Research into Human MovementManchester Metropolitan UniversityCheshireUK

Personalised recommendations