European Journal of Applied Physiology

, Volume 97, Issue 1, pp 26–33

RAAS polymorphisms alter the acute blood pressure response to aerobic exercise among men with hypertension

  • Bruce E. Blanchard
  • Gregory J. Tsongalis
  • Margaux A. Guidry
  • Lisa A. LaBelle
  • Michelle Poulin
  • Amy L. Taylor
  • Carl M. Maresh
  • Joseph Devaney
  • Paul D. Thompson
  • Linda S. Pescatello
Original Article

Abstract

Limited evidence suggests renin–angiotensin–aldosterone system (RAAS) polymorphisms alter the blood pressure (BP) response to aerobic exercise training. We examined if RAAS polymorphisms influenced postexercise hypotension in men with high normal to Stage 1 hypertension. Forty-seven men (44.2±1.4 years, 145.1±1.6/85.5±1.1 mmHg) randomly completed three experiments: seated rest (control) and two cycle exercise bouts at 40% (LITE) and 60% (MOD) of maximal oxygen consumption. Ambulating BP was measured for 14 h after each experiment. RAAS polymorphisms associated with hypertension (i.e. angiotensin converting I enzyme, ACE I/D; angiotensin II type 1 receptor, AT1R A/C; and intron 2 of aldosterone synthase, Int2 W/C) were analyzed using polymerase chain reaction and restriction enzyme digestion. Repeated measure ANOVA tested if BP differed between experimental conditions by RAAS genotypes. Compared to men with 0–2 variant alleles, men with ≥3 combined RAAS variant alleles had lower average systolic BP (SBP) (P=0.030) and lower average diastolic BP (DBP) (P=0.009) for 14 h only after LITE. In contrast, average BP was not different for MOD and control between RAAS variant allele groups over this time period (P≥0.05). LITE reduced BP in men with ≥3 variant RAAS alleles for 14 h, whereas MOD had no influence on BP in these men. In order to optimally prescribe exercise for its BP lowering benefits in those with hypertension, additional knowledge of how genetic variation affects the BP response to exercise is needed.

Keywords

Genetics Postexercise hypotension Cycle exercise Ambulatory blood pressure 

References

  1. American College of Sports Medicine (2000) ACSM’s Guidelines for Exercise Testing and Prescription, 6th edn. Lippincott, Williams & Wilkins, BaltimoreGoogle Scholar
  2. Berge KE, Berg K (1998) Polymorphisms at the angiotensinogen (AGT) and angiotensin II type 1 receptor (AT1R) loci and normal blood pressure. Clin Genet 53:214–219PubMedGoogle Scholar
  3. Castellano M, Glorioso N, Cusi D, Sarzani R, Fabris B, Opocher G, Zoccali C, Golin R, Veglio F, Volpe M, Mantero F, Fallo F, Rossi GP, Barlassina C, Tizzoni L, Filigheddu F, Giacche M, Rossi F (2003) Genetic polymorphism of the renin-angiotensin-aldosterone system and arterial hypertension in the Italian population: the GENIPER Project. J Hypertens 21:1853–1860PubMedCrossRefGoogle Scholar
  4. Danser AH, Deinum J, Osterop AP, Admiraal PJ, Schalekamp MA (1999) Angiotensin I to angiotensin II conversion in the human forearm and leg. Effect of the angiotensin converting enzyme gene insertion/deletion polymorphism. J Hypertens 17:1867–1872PubMedCrossRefGoogle Scholar
  5. Diez J, Laviades C, Orbe J, Zalba G, Lopez B, Gonzalez A, Mayor G, Paramo JA, Beloqui O (2003) The A1166C polymorphism of the AT1 receptor gene is associated with collagen type I synthesis and myocardial stiffness in hypertensives. J Hypertens 21:2085–2092PubMedCrossRefGoogle Scholar
  6. Fornage M, Amos CI, Kardia S, Sing CF, Turner ST, Boerwinkle E (1998) Variation in the region of the angiotensin-converting enzyme gene influences interindividual differences in blood pressure levels in young white males. Circulation 97:1773–1779PubMedGoogle Scholar
  7. van Geel PP, Pinto YM, Voors AA, Buikema H, Oosterga M, Crijns HJ, van Gilst WH (2000) Angiotensin II type 1 receptor A1166C gene polymorphism is associated with an increased response to angiotensin II in human arteries. Hypertension 35:717–721PubMedGoogle Scholar
  8. Hagberg JM, Ferrell RE, Dengel DR, Wilund KR (1999) Exercise training-induced blood pressure and plasma lipid improvements in hypertensives may be genotype dependent. Hypertension 34:18–23PubMedGoogle Scholar
  9. Henskens LH, Spiering W, Stoffers HE, Soomers FL, Vlietinck RF, de Leeuw PW, Kroon AA (2003) Effects of ACE I/D and AT1R-A1166C polymorphisms on blood pressure in a healthy normotensive primary care population: first results of the Hippocates study. J Hypertens 21:81–86PubMedCrossRefGoogle Scholar
  10. Humma LM, Terra SG (2002) Pharmacogenetics and cardiovascular disease: impact on drug response and applications to disease management. Am J Health Syst Pharm 9:1241–1252Google Scholar
  11. Kijima K, Matsubara H, Murasawa S, Maruyama K, Ohkubo N, Mori Y, Inada M (1996) Regulation of angiotensin II type 2 receptor gene by the protein kinase C-calcium pathway. Hypertension 27:529–534PubMedGoogle Scholar
  12. Kohno K, Matsuoka H, Takenaka K, Miyake Y, Nomura G, Imaizumi T (1997) Renal depressor mechanisms of physical training in patients with essential hypertension. Am J Hypertens 10:859–868PubMedCrossRefGoogle Scholar
  13. Laragh JH, Sealey JE (2003) Relevance of the plasma renin hormonal control system that regulates blood pressure and sodium balance for correctly treating hypertension and for evaluating ALLHAT. Am J Hypertens 16:407–415PubMedCrossRefGoogle Scholar
  14. Lockwood JM, Wilkins BW, Halliwill JR (2005) H1 receptor-mediated vasodilation contributes to postexercise hypotension. J Physiol 563.2:633–642Google Scholar
  15. Nicod J, Bruhin D, Auer L, Vogt B, Frey FJ, Ferrari P (2003) A biallelic gene polymorphism of CYP11B2 predicts increased aldosterone to renin ratio in selected hypertensive patients. J Clin Endocrinol Metab 88:2495–2500PubMedCrossRefGoogle Scholar
  16. O’Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ, Myers RH, Levy D (1998) Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 97:1766–1772PubMedGoogle Scholar
  17. Paulev PE, Jordal R, Kristensen O, Ladefoged J (1984) Therapeutic effect of exercise on hypertension. Eur J Appl Physiol Occup Physiol 53:180–185PubMedCrossRefGoogle Scholar
  18. Pescatello LS, Fargo AE, Leach CN Jr, Scherzer HH (1991) Short-term effect of dynamic exercise on arterial blood pressure. Circulation 83:1557–1561PubMedGoogle Scholar
  19. Pescatello LS, Kulikowich JM (2001) The after effects of dynamic exercise on ambulatory blood pressure. Med Sci Sports Exerc 33:1855–1861PubMedCrossRefGoogle Scholar
  20. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004a) American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc 36:533–553CrossRefGoogle Scholar
  21. Pescatello LS, Guidry MA, Blanchard BE, Kerr A, Taylor AL, Johnson AN, Maresh CM, Rodriguez N, Thompson PD (2004b) Exercise intensity alters postexercise hypotension. J Hypertens 22:1881–1888CrossRefGoogle Scholar
  22. Rankinen T, Gagnon J, Perusse L, Chagnon YC, Rice T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2000) AGT M235T and ACE ID polymorphisms and exercise blood pressure in the HERITAGE Family Study. Am J Physiol Heart Circ Physiol 279:H368–H374PubMedGoogle Scholar
  23. Schettini C, Bianchi M, Nieto F, Sandoya E, Senra H (1999) Ambulatory blood pressure: normality and comparison with other measurements. Hypertension Working Group. Hypertension 34:818–825PubMedGoogle Scholar
  24. Shanmugam V, Sell KW, Saha BK (1993) Mistyping ACE heterozygotes. PCR Methods Appl 3:120–121PubMedGoogle Scholar
  25. Staessen JA, Wang JG, Brand E, Barlassina C, Birkenhager WH, Herrmann SM, Fagard R, Tizzoni L, Bianchi G (2001) Effects of three candidate genes on prevalence and incidence of hypertension in a Caucasian population. J Hypertens 19:1349–1358PubMedCrossRefGoogle Scholar
  26. Taylor-Tolbert NS, Dengel DR, Brown MD, McCole SD, Pratley RE, Ferrell RE, Hagberg JM (2000) Ambulatory blood pressure after acute exercise in older men with essential hypertension. Am J Hypertens 13:44–51PubMedCrossRefGoogle Scholar
  27. Volpe M, Musumeci B, De Paolis P, Savoia C, Morganti A (2003) Angiotensin II AT2 receptor subtype: an uprising frontier in cardiovascular disease? J Hypertens 21:1429–1443PubMedCrossRefGoogle Scholar
  28. Williams GH, Fisher NDL (1997) Genetic approach to diagnostic and therapeutic decisions in human hypertension. Curr Opin Nephrol Hypertens 6:199–204PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bruce E. Blanchard
    • 1
    • 2
  • Gregory J. Tsongalis
    • 2
    • 3
  • Margaux A. Guidry
    • 1
  • Lisa A. LaBelle
    • 2
  • Michelle Poulin
    • 2
  • Amy L. Taylor
    • 2
  • Carl M. Maresh
    • 1
  • Joseph Devaney
    • 4
  • Paul D. Thompson
    • 2
  • Linda S. Pescatello
    • 1
  1. 1.University of CTStorrsUSA
  2. 2.Hartford HospitalHartfordUSA
  3. 3.Dartmouth-Hitchcock Medical CenterLebanonUSA
  4. 4.Children’s National Medical CenterWashingtonUSA

Personalised recommendations