European Journal of Applied Physiology

, Volume 96, Issue 5, pp 615–625 | Cite as

Effects of vibration and resistance training on neuromuscular and hormonal measures

  • Thue KvorningEmail author
  • Malene Bagger
  • Paolo Caserotti
  • Klavs Madsen
Original Article


The aim was to study whether whole body vibration (WBV) combined with conventional resistance training (CRT) induces a higher increase in neuromuscular and hormonal measures compared with CRT or WBV, respectively. Twenty-eight young men were randomized in three groups; squat only (S), combination of WBV and squat (S+V) and WBV only (V). S+V performed six sets with eight repetitions with corresponding eight repetition maximum (RM) loads on the vibrating platform, whereas S and V performed the same protocol without WBV and resistance, respectively. Maximal isometric voluntary contraction (MVC) with electromyography (EMG) measurements during leg press, counter movement jump (CMJ) measures (mechanical performance) including jump height, mean power (P mean), peak power (P peak) and velocity at P peak (V ppeak) and acute hormonal responses to training sessions were measured before and after a 9-week training period. ANOVA showed no significant changes between the three groups after training in any neuromuscular variable measured [except P mean, S higher than V (P<0.05)]. However, applying t tests within each group revealed that MVC increased in S and S+V after training (P<0.05). Jump height, P mean and P peak increased only in S, concomitantly with increased V ppeak in all groups (P<0.05). Testosterone increased during training sessions in S and S+V (P<0.05). Growth hormone (GH) increased in all groups but S+V showed higher responses than S and V (P<0.05). Cortisol increased only in S+V (P<0.05). We conclude that combined WBV and CRT did not additionally increase MVC and mechanical performance compared with CRT alone. Furthermore, WBV alone did not increase MVC and mechanical performance in spite of increased GH.


Whole body vibrations Muscle strength Muscle power Jump height EMG Anabolic hormones 



We would like to thank the subjects who participated in the study, laboratory technician Brit Thobo-Carlsen, engineer Cuno Rasmussen, Prof. Per Aagaard and the students Søren Smedegaard, Emil Pedersen and Mogens Fog for their cooperation during the study.


  1. Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2003) Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 89:555–563CrossRefPubMedGoogle Scholar
  2. Baechle TR, Earle RW, Wathen D (2000) Resistance training. In: Baechle TR, Earle RW (eds) Essentials of strength training and conditioning. Human Kinetics, USA, pp 410–411Google Scholar
  3. Baker D, Wilson G, Carlyon B (1994) Generality versus specificity a comparison of dynamic and isometric measures of strength and speed-strength. Eur J Appl Physiol Occup Physiol 68(4):350–355CrossRefPubMedGoogle Scholar
  4. Bosco C, Cardinale M, Tsarpela O, Colli R, Tihanyi J, Duvillard von SP, Viru A (1998) The influence of whole body vibration on jumping performance. Biol Sport 15:157–164Google Scholar
  5. Bosco C, Cardinale M, Tsarpela O (1999) Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles. Eur J Appl Physiol Occup Physiol 79:306–311CrossRefPubMedGoogle Scholar
  6. Bosco C, Iacovelli M, Tsarpela O, Cardinale M, Bonifazi M, Tihanyi J, Viru M, De Lorenzo A, Viru A (2000) Hormonal responses to whole-body vibration in men. Eur J Appl Physiol 81:449–454CrossRefPubMedGoogle Scholar
  7. Burke D, Hagbarth KE, Lofstedt L, Wallin BG (1976) The responses of human muscle spindle endings to vibration during isometric contraction. J Physiol 261:695–711PubMedGoogle Scholar
  8. Cardinale M, Bosco C (2003) The use of vibration as an exercise intervention. Exerc Sport Sci Rev 31:3–7CrossRefPubMedGoogle Scholar
  9. Cardinale M, Lim J (2003) Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J Strength Cond Res 17:621–624CrossRefPubMedGoogle Scholar
  10. Cardinale M, Pope MH (2003) The effects of whole body vibration on humans: dangerous or advantageous? Acta Physiol Hung 90:195–206CrossRefPubMedGoogle Scholar
  11. Caserotti P, Aagaard P, Simonsen EB, Puggaard L (2001) Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females. Eur J Appl Physiol 84:206–212CrossRefPubMedGoogle Scholar
  12. Cochrane DJ, Legg SJ, Hooker MJ (2004) The short-term effect of whole-body vibration training on vertical jump, sprint, and agility performance. J Strength Cond Res 18(4):828–832CrossRefPubMedGoogle Scholar
  13. Davis CTM, Rennie R (1968) Human Power output. Nature 217:770–771PubMedCrossRefGoogle Scholar
  14. De Ruiter CJ, van der Linden RM, van der Zijden MJ, Hollander AP, de Haan A (2003a) Short-term effects of whole-body vibration on maximal voluntary isometric knee extensor force and rate of force rise. Eur J Appl Physiol 88:472–475CrossRefGoogle Scholar
  15. De Ruiter CJ, Van Raak SM, Schilperoort JV, Hollander AP, de Haan A (2003b) The effects of 11 weeks whole body vibration training on jump height, contractile properties and activation of human knee extensors. Eur J Appl Physiol 90:595–600CrossRefGoogle Scholar
  16. Delecluse C, Roelants M, Verschueren S (2003) Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc 6:1033–1041CrossRefGoogle Scholar
  17. Fishbein WI, Salter LC (1984) The relationship between truck and tractor driving and disorders of the spine and supporting structures. Spine 9:395–399PubMedCrossRefGoogle Scholar
  18. Gabriel DA, Basford JR, An KN (2002) Vibratory facilitation of strength in fatigued muscle. Arch Phys Med Rehabil 83:1202–1205CrossRefPubMedGoogle Scholar
  19. Glowacki SP, Martin SE, Maurer A, Baek W, Green JS, Crouse SF (2004) Effects of resistance, endurance, and concurrent exercise on training outcomes in men. Med Sci Sports Exerc 36(12):2119–2127CrossRefPubMedGoogle Scholar
  20. Hakkinen K, Pakarinen A (1993) Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl Physiol 74:882–887PubMedGoogle Scholar
  21. Hansen S, Kvorning T, Kjaer M, Sjogaard G (2001) The effect of short-term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels. Scand J Med Sci Sports 11:347–354CrossRefPubMedGoogle Scholar
  22. Hermens H, Freriks B, Merletti R, Hagg G, Stegeman D, Blok J, Rau G, Disselhorst-Klug C (1999) European recommendations for surface electromyography. RRD, The NetherlandsGoogle Scholar
  23. Issurin VB, Tenenbaum G (1999) Acute and residual effects of vibratory stimulation on explosive strength in elite and amateur athletes. J Sports Sci 17:177–82CrossRefPubMedGoogle Scholar
  24. Jackson SW, Turner DL (2003) Prolonged muscle vibration reduces maximal voluntary knee extension performance in both the ipsilateral and the contralateral limb in man. Eur J Appl Physiol 88(4–5):380–386PubMedCrossRefGoogle Scholar
  25. Kadi F (2000) Adaptation of human skeletal muscle to training and anabolic steroids. Acta Physiol Scand Suppl 646:1–52PubMedGoogle Scholar
  26. Kraemer WJ, Scott AM (2002) Hormonal mechanisms related to the expression of muscular strength and power. In: Komi PV (ed) Strength and power in sport. Blackwell, Oxford, pp 64–76Google Scholar
  27. Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training, Sports Med 35(4):339–361CrossRefPubMedGoogle Scholar
  28. Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, Frykman P, McCurry D, Fleck SJ (1990) Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 69:1442–1450PubMedGoogle Scholar
  29. Kraemer WJ, Staron RS, Hagerman FC, Hikida RS, Fry AC, Gordon SE, Nindl BC, Gothshalk LA, Volek JS, Marx JO, Newton RU, Häkkinen K (1998) The effects of short-term resistance training on endocrine function in men and women. Eur J Appl Physiol 78:69–76CrossRefGoogle Scholar
  30. Mester J, Spitzenpfeil P, Yue Z (2002) Vibration loads: potential for strength and power development. In: Komi PV (ed) Strength and power in sport. Blackwell, Oxford, pp 488–501Google Scholar
  31. Mester J, Kleinöder H, Yue Z (2005) Vibration training: benefits and risks. J Biomech (in press)Google Scholar
  32. Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58:115–130PubMedGoogle Scholar
  33. McCurdy KW, Langford GA, Doscher MW, Wiley LP, Mallard KG (2005) The effects of short-term unilateral and bilateral lower-body resistance training on measures of strength and power. J Strength Cond Res 19(1):9–15CrossRefPubMedGoogle Scholar
  34. Rittweger J, Schiessl H, Felsenberg D (2001) Oxygen uptake during whole-body vibration exercise: comparison with squatting as a slow voluntary movement. Eur J Appl Physiol 86:169–173CrossRefPubMedGoogle Scholar
  35. Roelants M, Delecluse C, Goris M, Verschueren S (2004) Effects of 24 weeks of whole body vibration training on body composition and muscle strength in untrained females. Int J Sports Med 25:1–5PubMedCrossRefGoogle Scholar
  36. Ronnestad BR (2004) Comparing the performance-enhancing effects of squats on a vibrating platform with conventional squats in recreationally resistance-trained men. J Strength Cond Res18(4):839–845Google Scholar
  37. Romaiguere P, Vedel JP, Pagni S (1993) Effects of tonic vibration reflex on motor unit recruitment in human wrist extensor muscles. Brain Res 602:32–40CrossRefPubMedGoogle Scholar
  38. Torvinen S, Kannus P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Jarvinen TL, Jarvinen M, Oja P, Vuori I (2002a) Effect of four-month vertical whole body vibration on performance and balance. Med Sci Sports Exerc 34:1523–1528CrossRefGoogle Scholar
  39. Torvinen S, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Kannus P (2002b) Effect of 4-min vertical whole body vibration on muscle performance and body balance: a randomized cross-over study. Int J Sports Med 23:374–379CrossRefGoogle Scholar
  40. Torvinen S, Kannu P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Jarvinen TL, Jarvinen M, Oja P, Vuori I (2002c) Effect of a vibration exposure on muscular performance and body balance. Randomized cross-over study. Clin Physiol Funct Imaging 22:145–152CrossRefGoogle Scholar
  41. Torvinen S, Kannus P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Nenonen A, Jarvinen TL, Paakkala T, Jarvinen M, Vuori I (2003) Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res 18(5):876–884PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thue Kvorning
    • 1
    Email author
  • Malene Bagger
    • 1
  • Paolo Caserotti
    • 2
  • Klavs Madsen
    • 1
  1. 1.Institute of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdense MDenmark
  2. 2.Centre of Applied and Clinical Exercise ScienceUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations