European Journal of Applied Physiology

, Volume 95, Issue 5–6, pp 543–549 | Cite as

The effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress: results from a placebo-controlled double-blind study in cyclists

  • J. Morillas-Ruiz
  • P. Zafrilla
  • M. Almar
  • M. J. Cuevas
  • F. J. López
  • P. Abellán
  • J. A. Villegas
  • J. González-GallegoEmail author
Original Article


The objective of this study was to test the effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress in moderately trained cyclists. A double-blind study was conducted in moderately trained cyclists. They were randomly allocated to receive either an antioxidant (13 subjects) or a placebo (13 subjects) 15 min pre-exercise (30−1) and during a 90 min constant-load test (30−1.15 min−1) on a bicycle ergometer at 70% \({\dot{{\it V}}}{\text{O}}_{2\max}.\) The supplemented beverage contained black grape (81 g/l), raspberry (93 g/l) and red currant (39 g/l) concentrates, and its total antioxidant capacity, measured by the ABTS.+ technique, was 0.41 mM Trolox. No significant difference from basal to post-exercise period was detected for plasma TBARS in either the placebo group or the group receiving the antioxidant supplemented beverage. Post-exercise carbonyls decreased by 29% in the group receiving antioxidants, and the pattern of change was significantly different between antioxidant and placebo conditions. The urinary excretion of 8-OHdG increased significantly by 21% in the placebo group. Again differences in the pre- to post-exercise change were significant between both conditions These results suggest that in moderately trained cyclists, antioxidant supplementation counters oxidative stress induced by a 90 min exercise at 70% \({\dot{{\it V}}}{\text{O}}_{2\max}.\)


Exercise Antioxidant DNA oxidation Lipid peroxidation Protein oxidation 



We are grateful to S. Sánchez, A. Gómez and G. Caravaca for technical assistance. We are also indebted to the members of the L.T.I. (Laboratorio de Técnicas Instrumentales) of the University of León, and especially to J.C. García-Glez, for their helpful advice.


  1. Alcolea JF, Cano A, Acosta M, Arnao MB (2002) Hydrophilic and lipophilic antioxidant activities of grapes. Nahrung 46:353–356PubMedCrossRefGoogle Scholar
  2. Alessio HM, Hagerman AE, Fulkerson BK, Ambrose J, Rice RE, Wiley RL (2000) Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc 32:1576–1581PubMedCrossRefGoogle Scholar
  3. Almar M, Villa JG, Cuevas MJ, Rodríguez-Marroyo JA, Avila C, González-Gallego J (2003) Urinary levels of 8-hydroxyguanosine as a marker of oxidative damage in road cycling. Free Radic Res 36:247–253CrossRefGoogle Scholar
  4. Alonso-Borbalan AM, Zorro L, Guillen DA, Barroso CG (2003) Study of the polyphenol content of red and white grape varieties by liquid-chromatography-mass-spectrometry and its relationship to antioxidant power. J Chromatogr 12:31–38CrossRefGoogle Scholar
  5. Baskin C, Hinchcliff R, Di Silvestro RA, Reinhart GA, Hayek MG, Chew BP, Burr JR, Swenson RA (2000) Effects of dietary antioxidant supplementation on oxidative damage and resistance to oxidative damage during prolonged exercise in sled dogs. Am J Vet Res 61:886–891PubMedCrossRefGoogle Scholar
  6. Busss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC (1997) Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 23:361–366CrossRefGoogle Scholar
  7. Cantos E, García-Vigeura C, De Pascual S, Tomás-Barberán FA (2000) Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of Cv. Napoleón table grapes. J Afr Food Chem 48: 4606–4612CrossRefGoogle Scholar
  8. Chevion S, Moran DS, Heled Y, Shani Y, Regev G, Abbou B, Berenshtein E Stadman ER, Epstein Y (2003) Plasma antioxidant status and cell injury after severe physical exercise. Proc Natl Acad Sci USA 100:5119–5123PubMedCrossRefGoogle Scholar
  9. Di Mascio P, Kaiser SP, Devasagayam TP, Sies H (1991) Biological significance of active oxygen species: in vitro studies on singlet oxygen-induced DNA damage and on the single oxygen quenching ability of carotenoids, retinoids and tocopherol in humans serum and in food. J Chromatogr 619:37–48Google Scholar
  10. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma and red cells in dehydration. J Appl Physiol 37: 247–248PubMedGoogle Scholar
  11. Griffith HR (2000) Antioxidants and protein oxidation. Free Radic Res 33:S47–S58Google Scholar
  12. Hartmann A, Niess AM, Grunert-Fuchs M, Poch B, Speit G (1995) Vitamin E prevents exercise-induced DNA damage. Mutat Res 346:195–202PubMedCrossRefGoogle Scholar
  13. Huang H, Helzlouser KJ, Appel LJ (2000) The effects of vitamin C and vitamin E on oxidative DNA damage: results from a randomized controlled trial. Cancer Epidemiol Biomark Prevent 9:647–652Google Scholar
  14. Inoue T, Mu Z, Sumikawa K, Adachi K, Okochi T (1993) Effect of physical exercise on the content of 8-hydroxyguanosine in nuclear DNA prepared from human lymphocytes. Jpn J Cancer Res 84:720–725PubMedGoogle Scholar
  15. Ito H, Ohkuwa T, Yamazaki Y, Shimoda T, Wakayama A, Tamura S, Yamamoto T, Sato Y, Miyamura M (2000) Vitamin E supplementation attenuates leakage of enzymes following 6 successive days of running training. Int J Sports Med 21:369–374CrossRefGoogle Scholar
  16. Jackson M (1999) Free radicals in skin and muscle: damaging agents or signals for adaptation? Proc Nutr Soc 58:673–676PubMedCrossRefGoogle Scholar
  17. Jackson AS, Pollock ML (1985) Practical assessment of body composition. Phys Sports Med 13:77–90Google Scholar
  18. Jacob RA, Burri BJ (1996) Oxidative damage and defense. Am J Clin Nutr 63:985S–990SPubMedGoogle Scholar
  19. Jeukendrup A, Brouns F, Wagenmakers AJM, Saris WHM (1997) Carbohydrate-electrolyte feedings improve 1 h trial cycling performance. Int J Sports Med 18:125–129PubMedCrossRefGoogle Scholar
  20. Kaikkonen J, Kosonen L, Nyssonen K, Porkkala-Sarataho E, Salonen R, Korpela H, Salonen JT (1998) Effect of combined coenzyme Q10 and alpha-tocopheryl acetate supplementation on exercise-induced lipid peroxidation and muscular damage: a placebo-controlled double-blind study in marathon runners. Free Radic Res 29:85–92PubMedCrossRefGoogle Scholar
  21. Kortkiewski M, Brzezinska Z (1996) Lipid peroxides production after strenuous exercise and in relation to muscle morphology and capillarization. Muscle Nerve 19:1530–1537CrossRefGoogle Scholar
  22. Leaf DA, Kleinman MT, Hamilton M, Barstow TJ (1997) The effect of exercise intensity on lipid peroxidation. Med Sci Sports Exerc 29: 1036–1038PubMedGoogle Scholar
  23. Levine RL, Garland CN, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478PubMedCrossRefGoogle Scholar
  24. Loft S, Poulsen HE (1999) Markers of oxidative damage to DNA: antioxidants and molecular damage. Methods Enzymol 300:166–184PubMedGoogle Scholar
  25. Margaritis I, Tessier F, Richard MJ, Marconnet P (1997) No evidence of oxidative stress after a thriatlon race in highly trained competitors. Int J Sports Med 18:186–190PubMedCrossRefGoogle Scholar
  26. Mataix J (1995) Tablas de composición de alimentos españoles. Universidad de Granada, GranadaGoogle Scholar
  27. McAnulty SR, McAnulty LS, Nieman DC, Morrow JD, Utter AC, Henson DA, CL Dumke, Vinic DM (2003) Influence of carbohydrate ingestion on oxidative stress and plasma antioxidant potential following a 3 h run. Free Radic Res 37:835–840PubMedCrossRefGoogle Scholar
  28. McBride J, Kraemer W, Triplett-McBride T, Sebastianelli W (1998) Effect of resistance exercise on free radical production. Med Sci Sports Exerc 30:67–72PubMedGoogle Scholar
  29. Mena P, Maynar M, Gutierrez JM, Maynar J, Timon J, Campillo E (1991) Erythrocyte free radical scavenger enzymes in bicycle professional racers. Adaptation to training. Int J Sports Med 12:563–566PubMedCrossRefGoogle Scholar
  30. Miller NJ, Castelluccio C, Tijburg L, Rice-Evans C (1996) The antioxidant properties of theaflavins and their gallate esters-radical scavengers or metal chelators? FEBS Lett 392:40–44PubMedCrossRefGoogle Scholar
  31. Nieman DC, Henson D, McAnulty SR, McAnulty L, Swick NS, Utter AC, Vinci DM, Opiela S, Morrow JD (2002) Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol 92: 1970–1977PubMedGoogle Scholar
  32. Niess AM, Baumann M, Roecker K, Hortsmann T, Mayer TF, Dickhuth HH (1998) Effects of intensive endurance exercise on DNA damage in leukocytes. J Sports Med 38:111–115Google Scholar
  33. Odetti P, Garibaldi S, Noberasco G, Aragno I, Valentini S, Traverso N, Marinari UM (1999) Levels of carbonyl groups in plasma proteins of type 2 diabetes mellitus subjects. Acta Diabetol 36:179–183PubMedCrossRefGoogle Scholar
  34. Priem H, Loft S, Nyyssonen K, Salonen JT, Poulsen HE (1997) No effect of supplementation with vitamin E, ascorbic acid or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2′ deoxyguanosine excretion in smokers. Am J Clin Nutr 65:503–507Google Scholar
  35. Radak Z (2000) Free radicals in exercise and aging. Human Kinetics, ChampaignGoogle Scholar
  36. Radak Z, Ogonovsky H, Dubecz J, Pavlik G, Sasvari M, Pucsok J, Berkes I, Csont T, Ferdinandy P (1993) Super-marathon race increases serum and urinary nytrotyrosine and carbonyl levels. Eur J Clin Invest 33: 726–730CrossRefGoogle Scholar
  37. Rokitski L, Logemann E, Sagredos AN, Murphy M, Wetzel-Roth W, Keul J (1994a) Lipid peroxidation and antioxidative vitamins under extreme endurance stress. Acta Physiol Scand 151:149–158Google Scholar
  38. Rokitski L, Logemann E, Huber G, Keck E, Keul J (1994b) Alpha-tocopherol suplemmentation in racing cyclists during extreme endurance training. Int J Sports Nutr 4:253–264Google Scholar
  39. Sacheck JM, Blumberg JB (2001) Role of vitamin E and oxidative stress in exercise. Nutrition 17:809–814PubMedCrossRefGoogle Scholar
  40. Sen C, Rankinen T, Vaisanen S, Rauramaa R (1994) Oxidative stress after human exercise: effect of N-acetylcysteine supplementation. J Appl Physiol 76:2570–2577PubMedGoogle Scholar
  41. Sterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–417Google Scholar
  42. Sumida S, Tanaka K, Kitao H, Nakadomo F (1989) Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int J Biochem 21:835–838PubMedCrossRefGoogle Scholar
  43. Sumida S, Doi T, Sakurai M, Yoshioka Y, Okamura K (1997a) Effect of a single bout of exercise and beta-carotene supplementation on the urinary excretion of 8-hydroxy-deoxyguanosine in humans. Free Radic Res 27: 607–618PubMedCrossRefGoogle Scholar
  44. Sumida S, Okamura K, Doi T, Sakurai M, Yoshioka Y, Sugawa-Katayama Y (1997b) No influence of a single bout of exercise on urinary excretion of 8-hydroxy-deoxyguanosine in humans. Biochem Mol Biol Intern 42: 601–609Google Scholar
  45. Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 15:41–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. Morillas-Ruiz
    • 2
  • P. Zafrilla
    • 2
  • M. Almar
    • 1
  • M. J. Cuevas
    • 1
  • F. J. López
    • 2
  • P. Abellán
    • 3
  • J. A. Villegas
    • 2
  • J. González-Gallego
    • 1
    Email author
  1. 1.Department of PhysiologyUniversity of LeónLeónSpain
  2. 2.Department of PhysiologyCatholic University of MurciaMurciaSpain
  3. 3.Hero España, Research and DevelopmentMurciaSpain

Personalised recommendations