European Journal of Applied Physiology

, Volume 92, Issue 4–5, pp 437–442

The effects of a combined strength and aerobic exercise program on glucose control and insulin action in women with type 2 diabetes

  • Savvas P. Tokmakidis
  • Christos E. Zois
  • Konstantinos A. Volaklis
  • Kaliopi Kotsa
  • Anna-Maria Touvra
Original Article

Abstract

The purpose of the present study was to investigate the short- and long-term effects of a combined strength and aerobic training program on glycemic control, insulin action, exercise capacity and muscular strength in postmenopausal women with type 2 diabetes. Nine postmenopausal women, aged 55.2 (6.7) years, with type 2 diabetes participated in a supervised training program for 4 months consisting of two strength training sessions (3 sets of 12 repetitions at 60% one-repetition maximum strength) and two aerobic training sessions (60–70% of maximum heart rate at the beginning, and 70–80% of maximum heart rate after 2 months). Anthropometrical measurements, percentage glycated hemoglobin, a 2-h oral glucose tolerance test, exercise stress testing and maximum strength were measured at the beginning, and after 4 and 16 weeks of the exercise program. Significant reductions were observed in both the glucose (8.1% P<0.01) and insulin areas under the curve (20.7%, P<0.05) after 4 weeks of training. These adaptations were further improved after 16 weeks (glucose 12.5%, insulin 38%, P<0.001). Glycated hemoglobin was significantly decreased after 4 weeks [7.7 (1.7) vs 7.1 (1.3)%, P<0.05] and after 16 weeks [7.7 (1.7) vs 6.9 (1.0)%, P<0.01] of exercise training. Furthermore, exercise time and muscular strength were significantly improved after 4 weeks (P<0.01) as well as after 16 weeks (P<0.001) of training. Body mass and body-mass index, however, were not significantly altered throughout the study. The results indicated that a combined training program of strength and aerobic exercise could induce positive adaptations on glucose control, insulin action, muscular strength and exercise tolerance in women with type 2 diabetes.

References

  1. American College of Sports Medicine (2000) Position statement on exercise and type 2 diabetes. Med Sci Sports Exerc 32 (7):1345–1360PubMedGoogle Scholar
  2. American Diabetes Association (1999) Diabetes mellitus and exercise. Diabetes Care 22 [Suppl 1]:S49–S53Google Scholar
  3. Baron AD, Brechtel G, Wallance P, Edelman SV (1988) Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol 255:E769–E774PubMedGoogle Scholar
  4. Bogardus C, Ravussin E, Robbins DC, Wolfe RR, Horton ES, Sims EAH (1984) Effects of physical training and diet therapy on carbohydrate metabolism in patients with glucose intolerance and non-insulin-dependent diabetes mellitus. Diabetes 33:311–318PubMedGoogle Scholar
  5. Dunstan DW, Puddey IB, Beilin LJ, Burke V, Morton AR, Stanton KG (1998) Effects of a short-term circuit weight training program on glycaemic control in NIDDM. Diabetes Res Clin Pract 40:53–61CrossRefPubMedGoogle Scholar
  6. Dunstan DW, Daly RM, Owen N, Jolley D, Courten M, Shaw J, Zimmet P (2002) High-Intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care 25:1729–1736PubMedGoogle Scholar
  7. Eriksson J, Taimela S, Eriksson K, Parviainen S, Peltonen J, Kujala U (1997) Resistance training in treatment of non-insulin-dependent diabetes mellitus. Int J Sports Med 18:242–246PubMedGoogle Scholar
  8. Eriksson J, Tuominen J, Valle T, Sundberg S, Sovijarvi A, Lindholm H, Tuomilehto J, Koivisto V (1998) Aerobic endurance exercise or circuit-type resistance training for individuals with impaired glucose tolerance. Horm Metab Res 30:37–41PubMedGoogle Scholar
  9. Heled Y, Shapiro Y, Shani Y, Moran DS, Langzam L, Braiman L, Sampson SR, Meyerovitch J (2002) Physical exercise prevents the development of type 2 diabetes mellitus in Psammmomys obesus. Am J Physiol 282:E370–E375Google Scholar
  10. Honkola A, Forsen T, Eriksson J (1997) Resistance training improves the metabolic profile in individuals with type 2 diabetes. Acta Diabetol 34:245–248CrossRefPubMedGoogle Scholar
  11. Ishii T, Yamakita T, Sato T, Tanaka S, Fujii S (1998) Resistance training improves insulin sensitivity in NIDDM subjects without altering maximal oxygen uptake. Diabetes Care 21:1353–1355PubMedGoogle Scholar
  12. Lampman RM, Schteingart DE, Santinga JT, Savage PJ, Hydrick CR, Bassett DR, Block WD (1987) The influence of physical training on glucose tolerance, insulin sensitivity, and lipid and lipoprotein concentrations in middle-aged hypertriglyceridaemic, carbohydrate intolerant men. Diabetologia 30(6):380–385PubMedGoogle Scholar
  13. Maiorana A, O’Driscoll G, Goodman C, Taylor R, Green D (2002) Combined aerobic and resistance exercise improves glycemic control and fitness in type 2 diabetes. Diabetes Res Clin Pract 56:115–123CrossRefPubMedGoogle Scholar
  14. Mourier A, Gautier JF, DeKerviler E, Bigard AX, Villette JM, Garnier JP, Duvallet A, Guezennec CY, Cathelineau G (1997) Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM. Effects of branched-chain amino acid supplements. Diabetes Care 20:385–391PubMedGoogle Scholar
  15. Poehlman ET, Dvorak RV, de Nino WF, Brochu M, Ades PA (2000) Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: a randomized control trial. J Clin Endocrinol Metab 85:2463–2468CrossRefPubMedGoogle Scholar
  16. Pollock ML, Franklin BA, Balady GJ, Chaitman BL, Fleg JL, Fletcher B, Limacher M, Pina IL, Stein RA, Williams M, Bazzarre T (2000) Resistance exercise in individuals with and without cardiovascular disease: an advisor from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association. Circulation 101:828–833PubMedGoogle Scholar
  17. Ronnemaa T, Mattila K, Lehtonen A, Kallio V (1986) A controlled randomized study on the effect of long-term physical exercise on the metabolic control in type 2 diabetic patients. Acta Med Scand 220:219–224PubMedGoogle Scholar
  18. Ryder JW, Chibalin AV, Zierath JR (2001) Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Acta Physiol Scand 171:249–257CrossRefPubMedGoogle Scholar
  19. Sakamoto K, Goodyear LJ (2002) Exercise effects on muscle insulin signaling and action. Invited review: Intracellular signaling in contracting skeletal muscle. J Appl Physiol 93:369–383PubMedGoogle Scholar
  20. Schneider SH, Amoros LF, Khachadurian AK, Ruderman NB (1984) Studies on the mechanism of improved glucose control during regular exercise in type 2 diabetes. Diabetologia 26:355–360PubMedGoogle Scholar
  21. Schneider SH, Khachadurian AK, Amoros LF, Clemow L, Ruderman NB (1992) Ten-year experience with an exercise-based outpatient life-style modification program in the treatment of diabetes mellitus. Diabetes Care 15:1800–1810PubMedGoogle Scholar
  22. Segal KR, Edano A, Abalos A, Albu J, Blando L, Tomas MB, Pi-Sunyer FX (1991) Effect of exercise training on insulin sensitivity and glucose metabolism in lean, obese, and diabetic men. J Appl Physiol 71:2402–2411PubMedGoogle Scholar
  23. Smutok MA, Reece C, Kokkinos PF, Farmer CM, Dawson PK, DeVane J, Patterson J, Goldberg AP, Hurley BF (1994) Effects of exercise training modality on glucose control tolerance in men with abnormal glucose regulation. Int J Sports Med 15(6):283–289PubMedGoogle Scholar
  24. Tesch P (1988) Skeletal muscle adaptations to long-term heavy resistance exercise. Med Sci Sports Exerc 20 [Suppl 5]:S132–134Google Scholar
  25. Tessier D, Menard J, Fulop T, Ardilouze JL, Roy MA, Dubuc N, Dubois MF, Gauthier P (2000) Effects of aerobic physical exercise in the elderly with type 2 diabetes mellitus. Arch Gerontol Geriatr 31:121–132CrossRefPubMedGoogle Scholar
  26. Tomás E, Zorzano A, Ruderman NB (2002) Exercise effects on muscle insulin signaling and action. Exercise and insulin signaling: a historical perspective. J Appl Physiol 93:765–772PubMedGoogle Scholar
  27. Trovati M, Carta Q, Cavalot F, Vitali S, Banaudi C, Lucchina PG, Fiocchi F, Emanuelli G, Lenti G (1984) Influence of physical training on blood glucose control, glucose tolerance, insulin secretion, and insulin action in non-insulin-dependent diabetic patients. Diabetes Care 7:416–420PubMedGoogle Scholar
  28. UK Prospective Diabetes Study (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risks of complications in diabetes with type 2 diabetes (UKPDS 33). Lancet 352:837–853CrossRefPubMedGoogle Scholar
  29. Vanninen E, Uusitupa M, Siitonent O, Laitinen J, Lansimies E (1992) Habitual physical activity, aerobic capacity and metabolic control in patients with newly-diagnosed type 2 diabetes mellitus: Effect of 1-year diet and exercise intervention. Diabetologia 35:340–346PubMedGoogle Scholar
  30. Walker KZ, Piers LS, Putt PS, Jones JA, O’Dea K (1999) Effects of regular walking on cardiovascular risk factors and body composition in normoglycemic women and women with type 2 diabetes. Diabetes Care 22:555–561PubMedGoogle Scholar
  31. Wallace MB, Mills BD, Browning CL (1997) Effects of cross-training on markers of insulin resistance/ hyperinsulinemia. Med Sci Sports Exerc 29:1170–1175PubMedGoogle Scholar
  32. Wing RR, Epstein LH, Paternostro-Bayles M, Kriska A, Nowalk MP, Gooding W (1988) Exercise in a behavioural weight control programme for obese patients with type 2 (non-insulin-dependent) diabetes. Diabetologia 31:902–909PubMedGoogle Scholar
  33. Zierath JR (2002) Exercise effects of muscle insulin signaling and action. Invited review: Exercise training-induced changes in insulin signaling in skeletal muscle. J Appl Physiol 93:773–781PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Savvas P. Tokmakidis
    • 1
  • Christos E. Zois
    • 1
  • Konstantinos A. Volaklis
    • 1
  • Kaliopi Kotsa
    • 2
  • Anna-Maria Touvra
    • 1
  1. 1.Department of Physical Education and Sport ScienceDemocritus University of ThraceKomotini Greece
  2. 2.Department of EndocrinologyAristotelus University of ThessalonicaThessalonicaGreece

Personalised recommendations