Update on nandrolone and norsteroids: how endogenous or xenobiotic are these substances?

Review Article

Abstract

Norsteroids are xenobiotics with androgenic and anabolic properties known since as far back as the 1930s. In doping controls, the use of the banned xenobiotic norsteroids is detected in the competitor’s urines by the measurement of norandrosterone (19-NA) and noretiocholanolone (19-NE), which are the main metabolites for nandrolone (NT) and most norsteroids with anabolic properties. In 1996, the IOC subcommission “Doping and Biochemistry of Sport” informed the Heads of the “IOC Accredited Laboratories” that the recommended cut-off limit for reporting an offence was to be 1–2 ng ml−1 urine for either 19-NA or 19-NE. We will discuss how technical progress in gas chromatography coupled to high-resolution mass spectrometry permitted a dramatic increase in sensitivity with a detection limit of 1 pg ml−1 urine, or less, and an assay limit of 20–50 pg ml−1 urine, for either 19-NA or 19-NE. As a paradox, norsteroids have been known for decades as not only xenobiotics but also obligatory endogenous intermediates in the biosynthesis of estrogens from androgens in all species, man included. It is this biochemical observation which fed the active scientific and medical controversy initiated in 1998 over the possibly endogenous production of nandrolone and metabolites well over the new IOC’s recommended cut-off limit of 2 ng ml−1 urine. Notwithstanding the particular technical difficulties attached, we will provide data and discuss the minute endogenous levels detected and measured in man either at rest, after performance or training and compare them to the relatively high levels reported in male athlete’s doping controls today. We will also discuss data on the pharmacological effects of some contraceptive therapies containing norsteroids in women. In view of the well-documented noxious effects repeatedly observed after anabolic steroid misuse, the confirmation and implementation of technically proven procedures for reporting norsteroid abuse in sports seems an important enough goal to protect athlete’s health against such abuses and justifies up dating the review of the patent scientific and medical experience and knowledge gained over the last 50 years on nandrolone and its minor production in man and woman.

Keywords

Doping Human biosynthesis Nandrolone Norsteroids Sports 

References

  1. Abraham CE, Lobotsky J, Lloyd CW (1969) Metabolism of testosterone and androstenedione in normal and ovariectomized women. J Clin Invest 48:696–703PubMedGoogle Scholar
  2. Aguilera R, Becchi M, Casabianca H, Hatton C, Catlin DH, Starcevic B, Pope HG (1996) Improved method of detection of testosterone abuse by gas chromatography/combustion/isotope ratio mass spectrometry analysis of urinary steroids. J Mass Spectrom 31:169–176CrossRefPubMedGoogle Scholar
  3. Akhter J, Hyder S, Ahmed M (1994) Cerebrovascular accident associated with anabolic steroid use in a young man. Neurology 44:2405–2406PubMedGoogle Scholar
  4. Anderson KM, Liao S (1968) Selective retention of dihydrotestosterone by prostatic nuclei. Nature 219:227–279Google Scholar
  5. Auvray P, Sourdaine P, Bureau R, Rault S, Séralini GE (1998) Comparison of human and equine aromatases: a new lead to study structure-function relationships with site-directed mutagenesis (abstract no.149). 10th International Congress on Hormonal Steroids, QuébecGoogle Scholar
  6. Ayotte C, Lévesque JF, Cleroux MM, Lajeunesse A, Goudreault D, Fakirian A (2001) Sports nutritional supplements: quality and doping controls. Can J Appl Physiol 26S:120–129Google Scholar
  7. Belkien L, Schürmeyer T, Hano R, Gurnnasson PO, Nieschlag E (1985) Pharmacokinetics of 19-nortestosterone esters in normal men. Steroid Biochem 22:623–629CrossRefGoogle Scholar
  8. Bellino FL, Osawa Y (1974) Evidence of the direct aromatization of testosterone and different aromatization sites for testosterone and androstenedione in human placental microsomes. Biochemistry 13:1925–1931PubMedGoogle Scholar
  9. Bergink EW, Geelen JAA, Turpijn EW (1985) Metabolism and receptor binding of nandrolone and testosterone under in vitro and in vivo conditions. Acta Endocrinol [Suppl] 271:31–37Google Scholar
  10. Berkowitz GD, Fijimoto M, Brown TR, Brodie AM, Migeon CJ (1984) Aromatase activity in cultured human genital skin fibroblasts. J Clin Endocrinol Metab 59:665–671PubMedGoogle Scholar
  11. Bhasin S, Woodhouse L, Storer TW (2003) Androgen effects on body composition. Growth Horm IGF Res 12:S63–S71CrossRefGoogle Scholar
  12. Birch JA (1950) Hydroaromatic steroid hormone. I. 10-Nortestosterone. Chim Soc 367–368Google Scholar
  13. Bjorkhem I, Ek H (1982) Detection and quantitation of 19-norandrosterone in urine by isotope dilution-mass spectrometry. Steroid Biochem 17:447–451CrossRefGoogle Scholar
  14. Bowers LD (2002) Abuse of performance-enhancing drugs in sports. Ther Drug Monit 24:178–181CrossRefPubMedGoogle Scholar
  15. Bricout VA, Wright F, Lagoguey M (2003) Urinary profile of androgen metabolites in a population of sporting women. Int J Sports Med 24:1–6CrossRefGoogle Scholar
  16. Bruchovsky N, Wilson JD (1968) The conversion of testosterone to 5α-androstane-17β ol-3 one by rat prostate in vivo and in vitro. J Biol Chem 243:1314–1324Google Scholar
  17. Bruchovsky N, Wilson JD (1999) Discovery of the role of dihydrotestosterone in androgen action. Steroids 64:753–759CrossRefPubMedGoogle Scholar
  18. Butenandt A, Tscherning K (1934) Beiträge zur Konstitutionsermittlung des Follikelhormones. Z Physiol Chem 229:167–182Google Scholar
  19. Catlin DH, Wright J, Pope H, Liggett M (1993) Assessing the threat of anabolic steroids. Phys Sports Med 21:37–48Google Scholar
  20. Catlin DH, Hatton CK, Starcevic SH (1997) Issues in detecting abuse of xenobiotic anabolic steroids and testosterone by analysis of athletes’ urines. Clin Chem 43:1280–1288PubMedGoogle Scholar
  21. Courtot D, Guyot JL, Benoit E (1984) Mise en évidence de l’élimination urinaire de la 19-nortestostérone d’origine endogène chez le cheval mâle. C R Acad Sci Paris 299:139–141PubMedGoogle Scholar
  22. De Boer D, Bensik SN, Borggreve AR, Van Ooijen RD, Maes RAA (1992) Profiling 19-Norsteroids. III. GC/MS/MS analysis of 19-norsteroids during pregnancy. Proc 10th Cologne Workshop on Dope AnalysisGoogle Scholar
  23. Debruyckere G, Van Peteghem C (1993) Influence of the consumption of meat contaminated with anabolic steroids on doping tests. Anal Chim Acta 275:49–56CrossRefGoogle Scholar
  24. Dehennin L, Jondet M, Scholler R (1987) Androgen and 19-norsteroid profiles in human preovulatory follicles from stimulated cycles: an isotope dilution-mass spectrometric study. J Steroid Biochem 26:399–405CrossRefPubMedGoogle Scholar
  25. Dehennin L, Bonnaire Y, Plou PH (1999) Urinary excretion of 19-norandrosterone of endogenous origin in man: quantitative analysis by gas chromatography-mass spectrometry. J Chromatogr B 721:301–307CrossRefGoogle Scholar
  26. Desgrez P, Malmejac A (1970) Biochimie des Hormones stéroïdiennes. In: Delachaux, Niesttlé (eds) Sémiologie endocrinienne et métabolique (DCEM1). Faculté de Médecine Pitié-Salpêtrière, pp 221–269Google Scholar
  27. Dikkeschei LD, Wolthers BG, Boos-Zuur I, Brutel de la Rivière GT, Nagel G, Van der Kolk DA, et al (1996) Optimization of a classical aromatase activity assay and application in normal, adenomatous and malignant breast parenchyma. J Steroid Biochem Mol Biol 59:305–313CrossRefPubMedGoogle Scholar
  28. Dimick DE, Heron H, Baulieu EE, Jayle MF (1961) A comparative study of the metabolic fate of testosterone, 17α methyl-testosterone, 19 nor-testosterone, 17α methyl-19 nortestosterone, and 17α-methyl-estr-5(10)-ene-17β-ol-3-one in normal males. Clin Chim Acta 6:63–71CrossRefPubMedGoogle Scholar
  29. Donike M, Geyer H, Kraft M, Rauth S (1989) Long term influence of anabolic steroid misuse on the steroid profile. In: Donike M, Geyer H, Gotzmann A, Marek-Engelke U, Rauth S (eds) Recent advances in doping analysis. Proceedings of the 7th Köln Workshop on Dope Analysis. Sport und Buch Strauß Edition Sport, KölnGoogle Scholar
  30. Donike M, Rauth S, Sample B (1993) Excretion of ephedrine and endogenous steroids under conditions of controlled water intake and water diuresis. In: Donike M, Geyer H, Gotzmann A, Marek-Engelke U, Rauth S (eds) Recent advances in doping analysis. Proceedings of the 10th Köln Workshop on Dope Analysis. Sport und Buch Strauß Edition Sport, Köln, pp 163–175Google Scholar
  31. Dumasia MC, Houghton E, Jackiw M (1989) Steroids in equine testes: the identification of endogenous 19-hydroxy and 19-nor neutral steroids by gas chromatography-mass spectrometry. J Endocrinol 120:223–229PubMedGoogle Scholar
  32. Engel L, Alexander J, Wheeler M (1958) Urinary metabolites of administered 19 nortestosterone. J Biol Chem 231:159–165PubMedGoogle Scholar
  33. Farnsworth WE (1966) Metabolism of 19-nortestosterone by human prostate. Steroids 8:825–844CrossRefPubMedGoogle Scholar
  34. Franke WW, Berendonk B (1997) Practical aspects of screening of anabolic steroids in doping control with particular accent to nortestosterone radioimmunoassay using mixed antisera. Clin Chem 43:1262–1279PubMedGoogle Scholar
  35. Frankle M, Leffers D (1992) Hormonal doping and androgenization in athletes: a secret program of the German Democratic Republic government. Physician Sports Med 20:75–87Google Scholar
  36. Frisch RE, Canick JA, Tulchinsky D (1980) Human fatty marrow aromatizes androgen to estrogen. J Clin Endocrinol Metab 5:394–396Google Scholar
  37. Froehner M, Fischer R, Leike S, Hakenberg OW, Wirth MP (1999) Intratesticular leiomyosarcoma in a young man after high dose doping with oral turinabol—a case report. Cancer 86:1571–1575CrossRefPubMedGoogle Scholar
  38. Frost PG, Reed MJ, James VHT (1980) The aromatization of androstenedione by human adipose and liver tissue. J Steroid Biochem 13:1427–1431CrossRefPubMedGoogle Scholar
  39. Garrett WM, Hoover DJ, Shackleton CHL, Anderson LD (1991) Androgen metabolism by porcine granulosa cells during the process of luteinization in vitro: identification of 19-oic-androstenedione as a major metabolite and possible precursor for the formation of C18 neutral steroids. Endocrinology 129:2941–2950PubMedGoogle Scholar
  40. Guiochon-Mantel A, Milgröm E, Schaison G (1999) Biosynthèse et récepteurs des estrogènes. Estrogen biosynthesis and receptors. Ann Endocrinol 60:381–391Google Scholar
  41. Hagensen-Jetne AH, Misund J, Hemmersbach P (2000) Determination of urinary norandrosterone excretion in females during one menstrual cycle by GC-MS (Abstract no. 185). Pittcomm Conference, New Orleans, LAGoogle Scholar
  42. Hampl R, Starka L (1979) Practical aspects of screening of anabolic steroids in doping control with particular accent to nortestosterone radioimmunoassay using mixed antisera. J Steroid Biochem 11:933–936CrossRefPubMedGoogle Scholar
  43. Harada N, Yamada K, Saito K, Kibe N, Dohmae S, Takagi Y (1990) Structural characterization of the human estrogen synthetase (aromatase) gene. Biochem Biophys Res Commun 166:365–372PubMedGoogle Scholar
  44. Hartgens F, Van Marken Lichtenbelt, Ebbing S, Vollard N, Rietjens G, Kuipers (2001) Body composition and anthropometry in bodybuilders: regional changes due to nandrolone decanoate administration. Int J Sports Med 22:235–241CrossRefPubMedGoogle Scholar
  45. Hatton CK, Catlin DH (1987) Detection of androgenic anabolic steroids in urine. Clin Lab Med 7:655–667PubMedGoogle Scholar
  46. Hillier SG, Van den Boogaard AMJ, Reichert LE, Van Hall EV (1980) Intraovarian sex steroid hormone interactions and the regulation of follicular maturation: aromatization of androgens by human granulosa cells in vitro. J Clin Endocrinol Metab 50:640–647PubMedGoogle Scholar
  47. Huhtaniemi I. (1994) Topical review. anabolic androgenic steroids—a double edged sword? Int J Androl 17:57–62PubMedGoogle Scholar
  48. Kley HK, Deselaers T, Peerenboom H, Krüskemper HL (1980) Enhanced conversion of androstenedione to estrogens in obese males. J Clin Endocrinol Metab 51:1128–1132PubMedGoogle Scholar
  49. Kuipers H, Wijnen JA, Hartgens F, Willems SM (1991) Influence of anabolic steroids on body composition, blood pressure, lipid profile and liver functions in body builders. Int J Sports Med 12:413–418PubMedGoogle Scholar
  50. Le Bizec B, Monteau F, Gaudin I, Andre F (1999) Evidence for the presence of endogenous 19-norandrosterone in human urine. J Chromatogr B 723:157–172Google Scholar
  51. Le Bizec B, Bryand F, Gaudin I, Monteau F, Poulain F, Andre F (2002) Endogenous nandrolone metabolites in human urine: preliminary results to discriminate between endogenous and exogenous origin. Steroids 67:105–110CrossRefPubMedGoogle Scholar
  52. Li K, Adams JB (1981) Aromatization of testosterone and oestrogen receptor levels in human breast cancer. J Steroid Biochem 14:269–272CrossRefPubMedGoogle Scholar
  53. Longcope C, Widrich W, Sawin CT (1972) Secretion of estrone and estradiol-17β by human testis. Steroids 20:439–448CrossRefPubMedGoogle Scholar
  54. Loncope C, Pratt JH, Schneider SH, Fineberg SE (1976) In vivo studies on the metabolism of estrogens by muscle and adipose tissue of normal males. J Clin Endocrinol Metab 43:1134–1145PubMedGoogle Scholar
  55. Longcope C, Sato K, McKay C, Horton R (1983) Aromatization of Androgens by human splanchnic organs in vivo (abstract n°662). Endocrine Society, San Antonio, TexasGoogle Scholar
  56. Macome JC, Bischoff K, Uma Bai R, Diczfalusy E (1972) Factors influencing placental steroidogenesis in vitro. Steroids 20:469–485CrossRefPubMedGoogle Scholar
  57. Masse R, Laliberté C, Tremblay L, Dugal R (1985) Gas chromatographic/mass spectrometric analysis of 19-nortestosterone urinary metabolites in man. Biomed Mass Spectrom 12:115–121PubMedGoogle Scholar
  58. Masse R, Ayotte C, Dugal R (1989) Studies on anabolic steroids. I. Integrated methological approach to the gas chromatographic/mass spectrometric analysis of anabolic steroid metabolites in urine. J Chromatogr 489:23–50PubMedGoogle Scholar
  59. Mauvais-Jarvis P (1984) Medecine de la reproduction masculine. In: Schaison G, Bouchard P, Mahoudeau J, Labrie F (eds) Flammarion: Medecine-Sciences. Presses de l’Université, MontréalGoogle Scholar
  60. Mauvais-Jarvis P, Bercovici J-P (1968) Mouvements Biologiques: Sécrétion, production et interconversion des principaux androgènes (sujets normaux et femmes hirsutes). Presse Méd 37:1767–1771Google Scholar
  61. Mauvais-Jarvis P, Bercovici J-P, Crépy O, Gauthier F, Floch HH (1969a) Relations entre le métabolisme extra-hépatique et le mode d’action de la testostérone. Rapports Xème Réunion des Endocr Langue Fse, Paris. Masson, pp 182–199Google Scholar
  62. Mauvais-Jarvis P, Bercovici J-P, Gauthier F (1969b) Preliminary communication: in vivo studies on testosterone by skin of normal males and patients with the syndrome of testicular feminization. J Clin Endocrinol Metab 29:417–420PubMedGoogle Scholar
  63. McDonald PC, Rombaut P, Siiteri PK (1967) Plasma precursors of estrogen. I. Extent of conversion of plasma Δ4-androstenedione to estrone in normal males and nonpregnant normal, castrate and adrenalectomized females. J Clin Endocrinol Metab 27:1103–1111PubMedGoogle Scholar
  64. Michel G, Baulieu EE (1976) Studies of the androgen receptor in skeletal muscle. Internat (abstract no. 28). Symposium on androgens and antiandrogens, MilanGoogle Scholar
  65. Minto CF, Howe C, Wishart S, Conway AJ, Handelsman DJ (1997) Pharmacokinetics and pharmacodynamics of nandrolone esters in oil vehicle: effects of ester, injection site and injection volume. J Pharmacol Exp Ther 281:93–102PubMedGoogle Scholar
  66. Morville R, Pesquiés PC, Guézennec CY, Serrurier BD, Guignard M (1979) Plasma variations in testicular and adrenal androgens during prolonged physical exercise in man. Ann Endocrinol 40:501–510Google Scholar
  67. Moss-Newport J (1993) Anabolic steroid use and cerebellar haemorrhage (Letter). Med J Aust 158:794Google Scholar
  68. Nicolletti F (1998) Comparative urinary excretion rates for androsterone, endogenous testosterone metabolite, and norandrosterone a norsteroid metabolite. 15th Köln Workshop on Dope Analysis, March 1998. Köln Sport und Buch Strauß Ed Sport, KölnGoogle Scholar
  69. Nimrod A, Ryan KJ (1975) Aromatization of androgens by human abdominal and breast fat tissue. J Clin Endocrinol Metab 40:367–372PubMedGoogle Scholar
  70. Osawa Y, Yarborough C (1983) Non aromatizing androgen C10–19 lyase: biosynthesis of 19-norandrostenedione by dog adrenal (abstract n° 664). Endocrinological Society, San Antonio, TexasGoogle Scholar
  71. Payne AH, Kelche RP, Musich SS, Halpern ME (1976) Intratesticular site of aromatization in the human. J Clin Endocrinol Metab 42:1081–1087PubMedGoogle Scholar
  72. Perel E, Killinger DW (1979) The interconversion and aromatization of androgens by human adipose tissue. J Steroid Biochem 10:623–627CrossRefPubMedGoogle Scholar
  73. Perel E, Stolee KJ, Kharlip L, Blackstein ME, Killinger DW (1984) The intracellular control of aromatase activity by 5α-reduced androgens in breast carcinoma cells in culture. J Clin Endocrinol Metab 58:467–472PubMedGoogle Scholar
  74. Reznik Y, Herrou M, Dehennin L, Lemaire M, Leymarie P (1987) Rising levels of 19-norstestosterone throughout pregnancy: determination by radioimmunoassay and validation by gas chromatography-mass spectrometry. J Clin Endocrinol Metab 63:1086–108Google Scholar
  75. Reznik Y, Dehennin L, Coffin C, Mahoudeau J, Leymarie P (1999) Production endogène de 19-nor-testostérone (nandrolone) chez l’Homme: Influence du stress hypoglycémique et de la stimulation testiculaire par l’hormone gonadotrophine chorionique (HCG). Ann Endocrinol 60:279Google Scholar
  76. Reznik Y, Dehennin L, Coffin C, Mahoudeau J, Leymarie P (2001) Urinary nandrolone metabolites of endogenous origin in man: a confirmation by output regulation under human chorionic genadotropin stimulation. J Clin Endocrinol Metab 86:146–150PubMedGoogle Scholar
  77. Rogol AD, Velduis JD, Williams FA, Johnson ML (1984) Pulsatile secretion of gonadotropins and prolactin in male marathon runners. Relation to endogenous opiate system. J Androl 5:21–27PubMedGoogle Scholar
  78. Ryan K (1959) Biological aromatization of steroids. J Biol Chem 234:262–272PubMedGoogle Scholar
  79. Santen RJ (1990) Recent progress in development of aromatase inhibitors. J Steroid Biochem Mol Biol 37:1029–1035CrossRefPubMedGoogle Scholar
  80. Saugy M, Rivier L, Mangin P, Ayotte C, Dvorak J (2000) Nandrolone metabolites in football players: utility for in and out of competition tests. In Schanzer W, Geyer H, Gotzmann A, Marek-Engelke U (eds) Recent advances in doping analysis. Proceedings of the 17th Manfred Donike Workshop on Dope Analysis. Sport und Buch Strauß Edition Sport, Köln, pp 95–108Google Scholar
  81. Schänzer W (1996) Metabolism of anabolic androgenic steroids (review): in memory of Professor Manfred Donike. Clin Chem 42:1001–1021PubMedGoogle Scholar
  82. Schänzer W (1997) Metabolism of anabolic androgenic steroids: 5α and 5β-reduction of 3-keto-4-ene-steroids. In Schanzer W, Geyer H, Gotzmann A, Marek-Engelke U, Rauth S (eds) Recent advances in doping analysis Proceedings of the 14th Manfred Donike Workshop on Dope Analysis. Sport und Buch Strauß Edition Sport, Köln, pp 185–201Google Scholar
  83. Schmitt N, Flament M-M, Goubault C, Legros P, Grenier-Loustalot MF, Denjean A (2002) Nandrolone excretion is not increased by exhaustive exercise in trained athletes. Med Sci Sports Exerc 34:1436–1439CrossRefPubMedGoogle Scholar
  84. Schürmeyer T, Belkien L, Knuth UA, Nieslag E (1984) Reversible azoospermia induced by the anabolic steroid 19-nortestosterone. Lancet 2:417–420CrossRefPubMedGoogle Scholar
  85. Schweikert HU (1979) Conversion of androstenedione to estrone in human fibroblasts cultured from prostate, genital and nongenital skin. Horm Metab Res 11:635–640PubMedGoogle Scholar
  86. Segaloff A (1963) The enhanced local androgenic activity of 19-nor-steroids and stabilization of their structure by 4α- and 17α-methyl substituents to potent androgens by any route of administration. Steroids 1:299–315Google Scholar
  87. Short RV (1961) Steroid concentrations in the follicular fluid of mares at various stages of the reproductive cycle. J Endocrinol 22:153–163Google Scholar
  88. Short RV (1964) IV—Steroid hormones. Ovarian steroid synthesis and secretion in vivo. Rec Prog Horm Res 20:303–340PubMedGoogle Scholar
  89. Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Corbin CJ, Mendelson CR (1993) Tissue-specific promoters regulate aromatase cytochrome P450 expression. J Steroid Biochem Mol Biol 44:321–330CrossRefGoogle Scholar
  90. Skinner SJM, Akhtar M (1969) The stereospecific removal of a C-19 hydrogen atom in oestrogen biosynthesis. Biochem J 114:75–81PubMedGoogle Scholar
  91. Sullivan ML, Martinez CM, Gennis P, Gallagher EJ (1998) The cardiac toxicity of anabolic steroids. Prog Cardiovasc Dis 41:1–15Google Scholar
  92. Tabet J-C (1994) Stereochemical effects observed for steroid compounds. In: Splitter JS, Turecek F (eds) Applications of mass spectrometry to organic chemistry. Wiley, New York, pp 543–623Google Scholar
  93. Thompson AE Jr, Siiteri PK (1974) I Utilisation of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. II. The involvment of human placental microsomal cytochrome P450 in aromatization. J Biol Chem 249:5364–5378PubMedGoogle Scholar
  94. Tilson-Mallett N, Santner S, Feil PD, Santen RJ (1983) Biological significance of aromatase activity in human breast tumors. J Clin Endocrinol Metab 57:1125–1128PubMedGoogle Scholar
  95. Weinstein RL, Kelch RP, Jenner MR, Kaplan SL, Grumbach MM (1974) Secretion of unconjugated androgens and estrogens by the normal and abnormal human testis before and after human chorionic gonadotropin. J Clin Invest 53:1–6PubMedGoogle Scholar
  96. Wilson JD (1988) Androgen abuse in athletes. Endocrinol Rev 9:181–199Google Scholar
  97. Wilds AL, Nelson NA (1953) The facile synthesis of 19-nortestosterone and 19-norandrostenedione from oestrone. J Am Chem Soc 75:5366–5369Google Scholar
  98. Wright F, Bongini M, Lafarge JP, Antreassian J, Lagoguey M, Peres G (1993) Long term study of steroid and peptidic hormones in the plasma of healthy young men under controlled testosterone undecanoate therapy. In: Hemmersbach P, Birkeland KI (eds) Blood samples in doping control. Lillehammer International Symposium on Drugs in Sports, pp 64–74Google Scholar
  99. Wright F, Bozzolan F, Bongini M, Doukani A, Fink E, Bricout V (1998) Urinary epitestosterone in normally active and menstruating women as compared to athletes, prepuberal, hirsute and menopausal women (Abstract no.193). 10th International Congress on Hormonal steroids, QuebecGoogle Scholar
  100. Yesalis CE, Barsukiewicz CK, Kopstein AN, Bahrke MS (1997) Trends in anabolic androgenic steroid use among adolescents. Arch Pediatr Adol Med 151:1197–1206Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.UFR de Sciences, Département STAPSUniversité d’AvignonAvignonFrance
  2. 2.Faculté de Médecine Pitié-Salpêtrière, Service de Biochimie MédicaleUniversité Pierre et Marie CurieParis Cedex 13France

Personalised recommendations