Advertisement

Blue–yellow dyschromatopsia in toluene-exposed workers

  • Axel MuttrayEmail author
  • Volkmar Wolters
  • Dirk-Matthias Rose
Original Article
  • 13 Downloads

Abstract

Purpose

To evaluate the effects of a chronic occupational exposure to toluene on color vision.

Methods

Color vision was tested in 51 workers exposed to pure toluene and in 51 matched control subjects. Current exposure was determined by biological monitoring. Blood samples were taken at the end of a Friday shift. Color vision ability was assessed using the Ishihara plates (to screen for congenital dyschromatopsia), the Farnsworth panel D-15 test, the Lanthony panel D-15 desaturated test, the Velhagen plates, and the Standard Pseudoisochromatic Plates Part 2.

Results

Median toluene concentration was 1.59 mg/l (quartiles 0.78 and 2.65). The whole group of workers did not perform worse than the controls. The same applies to 20 printers, who regularly assessed hues. Assessed with the most sensitive Lanthony panel D-15 desaturated test, color vision of 24 permanently exposed assistants was impaired (median color confusion index of the 1st eyes 1.08 vs. 1.02, p < 0.02; 2nd eyes 1.08 vs. 1.0, p < 0.05; sign test). The assistants made almost exclusively blue–yellow errors. The other color vision tests did not reveal any differences between the groups.

Conclusion

Changes in the retina are a possible explanation for the observed blue–yellow dyschromatopsia.

Keywords

Toluene Color vision Dyschromatopsia Retina Occupational Biological monitoring 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agency for Toxic Substances Disease Registry (2017) Toxicological profile for toluene. https://www.atsdr.cdc.gov/toxprofiles/tp56.pdf. Accessed 25 Jan 2019
  2. Angerer J (1985) Occupational chronic exposure to organic solvents. XII. O-cresol excretion after toluene exposure. Int Arch Occup Environ Health 56:323–328CrossRefGoogle Scholar
  3. Angerer J et al (1998) Lösemittelgemische. In: Greim H (ed) Analytische Methoden zur Prüfung gesundheitsschädlicher Arbeitsstoffe: Band 1: Luftanalysen. Wiley, Hoboken, pp 1–12Google Scholar
  4. Arden GB, Wolf JE (2004) Colour vision testing as an aid to diagnosis and management of age related maculopathy. Br J Ophthalmol 88:1180–1185.  https://doi.org/10.1136/bjo.2003.033480 CrossRefGoogle Scholar
  5. Arrighi HM, Hertz-Picciotto I (1994) The evolving concept of the healthy worker survivor effect. Epidemiology 5:189–196CrossRefGoogle Scholar
  6. Baelum J, Andersen IB, Lundqvist GR, Molhave L, Pedersen OF, Vaeth M, Wyon DP (1985) Response of solvent-exposed printers and unexposed controls to six-hour toluene exposure. Scand J Work Environ Health 11:271–280CrossRefGoogle Scholar
  7. Berry KP, Nedivi E (2016) Experience-dependent structural plasticity in the visual system. Annu Rev Vis Sci 2:17–35.  https://doi.org/10.1146/annurev-vision-111815-114638 CrossRefGoogle Scholar
  8. Birch J, Chisholm IA, Kinnear P, Pinckers AJLG, Pokorny J, Smith VC, Verriest G (1979) Clinical testing methods. In: Pokorny J, Smith VC, Verriest G, Pinckers AJLG (eds) Congenital and acquired color vision defects. Grune & Stratton, New York, pp 83–135Google Scholar
  9. Böckelmann I, Lindner H, Peters B, Pfister EA (2003) Einfluss langjähriger beruflicher Lösungsmittelexposition auf das Farbensehen. Ophthalmologe 100:133–141CrossRefGoogle Scholar
  10. Bowman KJ (1982) A method for quantitative scoring of the Farnsworth Panel D-15. Acta Ophthalmol Copenh 60:907–916CrossRefGoogle Scholar
  11. Bowman KJ, Cameron KD (1984) A quantitative assessment of colour discrimination in normal vision and senile macular degeneration using some colour confusion tests. In: Verriest G (ed) Colour vision deficiencies VII. Dr W. Junk, The Hague Boston Lancaster, pp 363–370Google Scholar
  12. Boyes WK et al (2007) Acute toluene exposure and rat visual function in proportion to momentary brain concentration. Toxicol Sci 99:572–581.  https://doi.org/10.1093/toxsci/kfm172 CrossRefGoogle Scholar
  13. Boyes WK et al (2016) Toluene inhalation exposure for 13 weeks causes persistent changes in electroretinograms of Long-Evans rats. Neurotoxicology 53:257–270.  https://doi.org/10.1016/j.neuro.2016.02.008 CrossRefGoogle Scholar
  14. Campagna D, Stengel B, Mergler D, Limasset JC, Diebold F, Michard D, Huel G (2001) Color vision and occupational toluene exposure. Neurotoxicol Teratol 23:473–480CrossRefGoogle Scholar
  15. Cavalleri A, Gobba F, Nicali E, Fiocchi V (2000) Dose-related color vision impairment in toluene-exposed workers. Arch Environ Health 55:399–404CrossRefGoogle Scholar
  16. Cole BL (2004) The handicap of abnormal colour vision. Clin Exp Optom 87:258–275CrossRefGoogle Scholar
  17. Costa TL, Barboni MT, Moura AL, Bonci DM, Gualtieri M, de Lima Silveira LC, Ventura DF (2012) Long-term occupational exposure to organic solvents affects color vision, contrast sensitivity and visual fields. PLoS One 7:e42961.  https://doi.org/10.1371/journal.pone.0042961 CrossRefGoogle Scholar
  18. Cruz SL, Rivera-Garcia MT, Woodward JJ (2014) Review of toluene action: clinical evidence, animal studies and molecular targets. J Drug Alcohol Res.  https://doi.org/10.4303/jdar/235840 Google Scholar
  19. Deleu D, Hanssens Y (2000) Cerebellar dysfunction in chronic toluene abuse: beneficial response to amantadine hydrochloride. J Toxicol Clin Toxicol 38:37–41CrossRefGoogle Scholar
  20. Deutsche Forschungsgemeinschaft Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe (1998) Toluol (Nachtrag). Gesundheitsschädliche Arbeitsstoffe. Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten. Wiley, Weinheim. https://onlinelibrary.wiley.com/doi/pdf/10.1002/3527600418.mb10888d0027. Accessed 25 Jan 2019
  21. Deutsche Forschungsgemeinschaft Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe (2016) MAK- und BAT-Werte-Liste 2016. Wiley, Weinheim. http://onlinelibrary.wiley.com/book/10.1002/9783527805976. Accessed 25 Jan 2019
  22. Farnsworth D (1943) The Farnsworth-Munsell 100-Hue and dichotomous tests for color vision. J Opt Soc Am 33:568–578CrossRefGoogle Scholar
  23. Feitosa-Santana C et al (2008) Irreversible color vision losses in patients with chronic mercury vapor intoxication. Vis Neurosci 25:487–491.  https://doi.org/10.1017/s0952523808080590 CrossRefGoogle Scholar
  24. Fox DA (2015) Retinal and visual system: occupational and environmental toxicology. In: Lotti M, Bleecker ML (eds) Handbook of Clinical Neurology, vol 131. 2015/11/14 edn. Elsevier, Amsterdam, pp 325–340.  https://doi.org/10.1016/b978-0-444-62627-1.00017-2
  25. Geller AM, Hudnell HK (1997) Critical issues in the use and analysis of the Lanthony Desaturate Color Vision test. Neurotoxicol Teratol 19:455–465CrossRefGoogle Scholar
  26. Gobba F, Cavalleri A (2003) Color vision impairment in workers exposed to neurotoxic chemicals. Neurotoxicology 24:693–702CrossRefGoogle Scholar
  27. Grant MW, Schuman JS (eds) (1993) Toxicology of the eye. Charles C. Thomas. SpringfieldGoogle Scholar
  28. Gupta SR, Palmer CA, Cure JK, Balos LL, Lincoff NS, Kline LB (2011) Toluene optic neurotoxicity: magnetic resonance imaging and pathologic features. Hum Pathol 42:295–298.  https://doi.org/10.1016/j.humpath.2010.08.005 CrossRefGoogle Scholar
  29. Hart WM (1987) Acquired dyschromatopsias. Surv Ophthalmol 32:10–31CrossRefGoogle Scholar
  30. Holló G, Varga M (1992) Toluene and visual loss. Neurology 42:266CrossRefGoogle Scholar
  31. Huchzermeyer C, Kremers J, Barbur J (2016) Color vision in clinical practice. In: Kremers J, Baraas RC, Marshall NJ (eds) Human color vision. Springer, Cham, pp 269–315.  https://doi.org/10.1007/978-3-319-44978-4_10 Google Scholar
  32. Ichikawa K, Hukami K, Tanabe S (1983) Standard Pseudoisochromatic Plates Part II for acquired color vision defects. Igaku-Shoin, Tokyo New YorkGoogle Scholar
  33. Iregren A, Andersson M, Nylen P (2002) Color vision and occupational chemical exposures: I. An overview of tests and effects. Neurotoxicology 23:719–733CrossRefGoogle Scholar
  34. Ishihara S (1990) The series of plates designed as a test for colour blindness, 24. plates edn. Kanehara, TokyoGoogle Scholar
  35. Kiyokawa M, Mizota A, Takasoh M, Adachi-Usami E (1999) Pattern visual evoked cortical potentials in patients with toxic optic neuropathy caused by toluene abuse. Jpn J Ophthalmol 43:438–442CrossRefGoogle Scholar
  36. Köllner H (1912) Die Störungen des Farbensinnes und ihre klinische Bedeutung und ihre Diagnose. S. Karger, BerlinCrossRefGoogle Scholar
  37. Krastel H, Gehrung H, Dax K, Rohrschneider K (1991) Clinical application of the Heidelberg anomaloscope. In: Drum B, Moreland JD, Serra A (eds) Colour vision deficiencies X. Kluwer, Dordrecht, pp 135–149CrossRefGoogle Scholar
  38. Krastel H, Kolling G, Schiefer U, Bach M (2009) Qualitätsanforderungen an die Untersuchung des Farbsinns. Ophthalmologe 106:1083–1102CrossRefGoogle Scholar
  39. Kurtenbach A, Kernstock C, Zrenner E, Langrova H (2015) Electrophysiology and colour: a comparison of methods to evaluate inner retinal function. Doc Ophthalmol 131:159–167.  https://doi.org/10.1007/s10633-015-9512-z CrossRefGoogle Scholar
  40. Lacerda EM, Lima MG, Rodrigues AR, Teixeira CE, de Lima LJ, Ventura DF, Silveira LC (2012) Psychophysical evaluation of achromatic and chromatic vision of workers chronically exposed to organic solvents. J Environ Public Health 2012:784390.  https://doi.org/10.1155/2012/784390 CrossRefGoogle Scholar
  41. Lanthony P (1978) The desaturated panel D-15. Doc Ophthalmol 46:185–189Google Scholar
  42. Lomax RB, Ridgway P, Meldrum M (2004) Does occupational exposure to organic solvents affect colour discrimination? Toxicol Rev 23:91–121CrossRefGoogle Scholar
  43. Lyle WM (1974) Drugs and conditions which may affect color vision. Part II. Diseases and conditions. J Am Optom Assoc 45:173–182Google Scholar
  44. Malm G, Lying Tunell U (1980) Cerebellar dysfunction related to toluene sniffing. Acta Neurol Scand 62:188–190CrossRefGoogle Scholar
  45. Marjot R, McLeod AA (1989) Chronic non-neurological toxicity from volatile substance abuse. Hum Toxicol 8:301–306CrossRefGoogle Scholar
  46. Marré M, Marré E (eds) (1986) Erworbene Störungen des Farbensehens—Diagnostik. VEB Georg Thieme, LeipzigGoogle Scholar
  47. Marré M, Marré E, Eckardt T (1991) Der SPP-II-Test (Standard Pseudoisochromatic Plates Part II)—eine Untersuchungsmethode für erworbene Farbensehstörungen. Spektrum Augenheilk 5:51–58CrossRefGoogle Scholar
  48. Mergler D (1994) Neurotoxicology of the visual system. Part 1: Early indications of visual dysfunction. In: Bleecker ML (ed) Occupational neurology and clinical neurotoxicology. Williams and Wilkins, Baltimore, pp 161–172Google Scholar
  49. Muttray A, Wolters V, Mayer-Popken O, Schicketanz KH, Konietzko J (1995) Effect of subacute occupational exposure to toluene on color vision. Int J Occup Med Environ Health 8:339–345Google Scholar
  50. Muttray A, Wolff U, Jung D, Konietzko J (1997) Blue-yellow deficiency in workers exposed to low concentrations of organic solvents. Int Arch Occup Environ Health 70:407–412CrossRefGoogle Scholar
  51. Muttray A, Unger C, Jung D, Konietzko J (1998a) Erworbene Farbensehstörungen in der Arbeitswelt. Teil 1: Diagnostik und Referenzwerte. Arbeitsmed Sozialmed Umweltmed 33:144–152Google Scholar
  52. Muttray A, Wolters V, Wolff U, Konietzko J (1998b) Erworbene Farbensehstörungen in der Arbeitswelt. Teil 2: Untersuchungen zur Eignung bei erworbenen und angeborenen Farbensehstörungen. Arbeitsmed Sozialmed Umweltmed 33:183–189Google Scholar
  53. Muttray A, Wolters V, Jung D, Konietzko J (1999) Effects of high doses of toluene on color vision. Neurotoxicol Teratol 21:41–45CrossRefGoogle Scholar
  54. Muttray A, Loos AH, Jung D, Rose D-M (2002) Muß der MAK-Wert für CS2 wegen erworbener Farbsinnesstörungen gesenkt werden? (letter). Arbeitsmed Sozialmed Umweltmed 37:47Google Scholar
  55. Neubert D, Bochert G, Gericke C, Hanke B, Beckmann G (2001) Multicenter field trial on possible health effects of toluene. I. Toluene body burdens in workers of the rotogravure industry. Toxicology 168:139–157CrossRefGoogle Scholar
  56. Özgen E, Davies IR (2002) Acquisition of categorical color perception: a perceptual learning approach to the linguistic relativity hypothesis. J Exp Psychol Gen 131:477–493CrossRefGoogle Scholar
  57. Paramei GV (2012) Color discrimination across four life decades assessed by the Cambridge Colour Test. J Opt Soc Am A Opt Image Sci Vis 29:A290–A297.  https://doi.org/10.1364/josaa.29.00a290 CrossRefGoogle Scholar
  58. Paramei GV, Meyer-Baron M, Seeber A (2004) Impairments of colour vision induced by organic solvents: a meta-analysis study. Neurotoxicology 25:803–816CrossRefGoogle Scholar
  59. Pinckers A, Marre M (1992) An analysis of colour vision in 10,000 patients. Doc Ophthalmol 82:25–28CrossRefGoogle Scholar
  60. Pinckers A, Nabbe B, van den Boyaard P (1976) Le test 15 Hue désaturé de Lanthony. Ann Ocul 209:731–738Google Scholar
  61. Pinckers A, Nabbe B, Vossen H (1985) Standard Pseudoisochromatic Plates part 2. Ophthalmologica 190:118–124CrossRefGoogle Scholar
  62. Pokorny J, Collins B, Howett G, Lakowski R, Lewis M (1981) Procedures for testing color vision. Committee on Vision, National Research Council, WashingtonGoogle Scholar
  63. Raitta C, Seppalainen AN, Huuskonen MS (1978) N-hexane maculopathy in industrial workers. Albrecht von Graefes Arch Klin Exp Ophthalmol 209:99–110CrossRefGoogle Scholar
  64. Ristic I, Stankovic S, Paravina RD (2016) Influence of color education and training on shade matching skills. J Esthet Restor Dent 28:287–294.  https://doi.org/10.1111/jerd.12209 CrossRefGoogle Scholar
  65. Roy MS, Podgor MJ, Collier B, Gunkel RD (1991) Color vision and age in a normal North American population. Graefes Arch Clin Exp Ophthalmol 229:139–144CrossRefGoogle Scholar
  66. Russell RM, Carney EA, Feiock K, Garrett M, Karwoski P (1980) Acute ethanol administration causes transient impairment of blue-yellow color vision. Alcohol Clin Exp Res 4:396–399CrossRefGoogle Scholar
  67. Santaella RM, Fraunfelder FW (2007) Ocular adverse effects associated with systemic medications: recognition and management. Drugs 67:75–93CrossRefGoogle Scholar
  68. Schäper M, Demes P, Kiesswetter E, Zupanic M, Seeber A (2004) Colour vision and occupational toluene exposure: results of repeated examinations. Toxicol Lett 151:193–202CrossRefGoogle Scholar
  69. Taubert M, Villringer A, Ragert P (2012) Learning-related gray and white matter changes in humans: an update. Neuroscientist 18:320–325.  https://doi.org/10.1177/1073858411419048 CrossRefGoogle Scholar
  70. Toyonaga N, Adachi-Usami E, Yamazaki H (1989) Clinical and electrophysiological findings in three patients with toluene dependency. Doc Ophthalmol 73:201–207CrossRefGoogle Scholar
  71. Urban P, Lukas E (1990) Visual evoked potentials in rotogravure printers exposed to toluene. Br J Ind Med 47:819–823Google Scholar
  72. Velhagen K, Broschmann D (1989) Tafeln zur Prüfung des Farbensinnes. Thieme, Stuttgart New YorkGoogle Scholar
  73. Verriest G (1963) Further studies on acquired deficiency of color discrimination. J Opt Soc Am 53:185–195CrossRefGoogle Scholar
  74. Vrca A, Bozicevic D, Bozikov V, Fuchs R, Malinar M (1997) Brain stem evoked potentials and visual evoked potentials in relation to the length of occupational exposure to low levels of toluene. Acta Med Croatica 51:215–219Google Scholar
  75. World Health Organization (ed) (1985) Toluene (Environmental Health Criteria 52). GenevaGoogle Scholar
  76. Yücel M, Takagi M, Walterfang M, Lubman DI (2008) Toluene misuse and long-term harms: a systematic review of the neuropsychological and neuroimaging literature. Neurosci Biobehav Rev 32:910–926.  https://doi.org/10.1016/j.neubiorev.2008.01.006 CrossRefGoogle Scholar
  77. Zavalic M, Mandic Z, Turk R, Bogadi Sare A, Plavec D (1998) Quantitative assessment of color vision impairment in workers exposed to toluene. Am J Ind Med 33:297–304CrossRefGoogle Scholar
  78. Zrenner E, Riedel KG, Adamczyk R, Gilg T, Liebhardt E (1986) Effects of ethyl alcohol on the electrooculogram and color vision. Doc Ophthalmol 63:305–312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Occupational, Social and Environmental MedicineUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany

Personalised recommendations