Advertisement

Traffic-related air pollution is associated with cardio-metabolic biomarkers in general residents

  • Shuo Jiang
  • Liang Bo
  • Changyi Gong
  • Xihao Du
  • Haidong Kan
  • Yuquan Xie
  • Weimin Song
  • Jinzhuo ZhaoEmail author
Original Article

Abstract

Purpose

The study was conducted to explore the mechanisms linking traffic-related air pollution and cardio-metabolic risk.

Methods

The participants included 371 men and women aged from 45 to 75 in an urban residential area in Shanghai, China. The participants were divided into four categories (≤50, 51–100, 101–200 and >200 m) according to the residential distance to major road. Additionally, the personal fine particulate matter (PM2.5) was measured from 8:00 am to 6:00 pm to assess the PM2.5 exposure in general residents. Then, the continuous subclinical measurements and biological effects related to cardio-metabolic disorders were detected. The generalized linear regression analysis was applied for estimating the adjusted hazards ratio for cardio-metabolic disorders relative to traffic-related air pollution.

Results

The average personal PM2.5 is 111.1 μg/m3 in the participants living within 50 m to major road, which is significantly higher than the personal PM2.5 (68.2 μg/m3) in the participants living more than 200 m away from the major road. The participants living within 50 m to major road compared with those living more than 200 m away have 1.15 times higher of heart rate (HR), 1.95 times higher of fasting insulin, 1.30 times higher of homeostasis model assessment of insulin resistance (HOMA-IR), 1.56 times higher of low-density lipoprotein cholesterol (LDL-C), 8.39 times higher of interleukin 6 (IL-6), 4.30 times higher of augmentation index (AI), 1.60 times higher of systolic blood pressure (SBP) and 1.91 times higher of diastolic blood pressure (DBP). Contrary to the increase in above biological effects, there were 1.06 times lower of low frequency (LF), 1.05 times lower of high frequency (HF), 2.54 times lower of IL-10, 4.61 times lower of nitric oxide (NO), 1.19 times lower of superoxide dismutase (SOD) and 1.85 times lower of total antioxidant capacity (T-AOC). There was no clear exposure–response relationship can be observed in the fasting glucose, LF/HF, cholesterol and high-density lipoprotein (HDL).

Conclusion

Long-term exposure to traffic-related air pollution may contribute to the development or exacerbation of cardio-metabolic disorders. The mechanisms linking air pollution and cardio-metabolic disorders may be associated with the increased systemic inflammation and oxidative stress, reduced insulin sensitivity and elevated arterial stiffness and blood pressure.

Keywords

Traffic-related air pollution Fine particulate matter Cardio-metabolic disorders 

Notes

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (No. 91543119, 81001229).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Andrukhova O, Slavic S, Zeitz U, Riesen SC, Heppelmann MS, Ambrisko TD, Markovic M, Kuebler WM, Erben RG (2014) Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol 28:53–64CrossRefGoogle Scholar
  2. Baccarelli A, Martinelli I, Pegoraro V, Melly S, Grillo P, Zanobetti A, Hou L, Bertazzi PA, Mannucci PM, Schwartz J (2009) Living near major traffic roads and risk of deep vein thrombosis. Circulation 119:3118–3124CrossRefGoogle Scholar
  3. Brook RD, Rajagopalan S, Pope CR, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SJ, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378CrossRefGoogle Scholar
  4. Cavalcanti S, Severi S, Chiari L, Avanzolini G, Enzmann G, Bianco G, Panzetta G (1997) Autonomic nervous function during haemodialysis assessed by spectral analysis of heart-rate variability. Clin Sci (Lond) 92:351–359CrossRefGoogle Scholar
  5. Chen LC, Hwang JS (2005) Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. IV. Characterization of acute and chronic effects of ambient air fine particulate matter exposures on heart-rate variability. Inhal Toxicol 17:209–216CrossRefGoogle Scholar
  6. Diez RA, Auchincloss AH, Astor B, Barr RG, Cushman M, Dvonch T, Jacobs DJ, Kaufman J, Lin X, Samson P (2006) Recent exposure to particulate matter and C-reactive protein concentration in the multi-ethnic study of atherosclerosis. Am J Epidemiol 164:437–448CrossRefGoogle Scholar
  7. Dockery DW, Pope CR, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BJ, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759CrossRefGoogle Scholar
  8. Donaldson K, Stone V, Seaton A, MacNee W (2001) Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect 109(Suppl 4):523–527CrossRefGoogle Scholar
  9. Dong GH, Qian ZM, Xaverius PK, Trevathan E, Maalouf S, Parker J, Yang L, Liu MM, Wang D, Ren WH, Ma W, Wang J, Zelicoff A, Fu Q, Simckes M (2013) Association between long-term air pollution and increased blood pressure and hypertension in China. Hypertension 61:578–584CrossRefGoogle Scholar
  10. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622CrossRefGoogle Scholar
  11. Farraj AK, Hazari MS, Haykal-Coates N, Lamb C, Winsett DW, Ge Y, Ledbetter AD, Carll AP, Bruno M, Ghio A, Costa DL (2011) ST depression, arrhythmia, vagal dominance, and reduced cardiac micro-RNA in particulate-exposed rats. Am J Respir Cell Mol Biol 44:185–196CrossRefGoogle Scholar
  12. Gan WQ, Tamburic L, Davies HW, Demers PA, Koehoorn M, Brauer M (2010) Changes in residential proximity to road traffic and the risk of death from coronary heart disease. Epidemiology 21:642–649CrossRefGoogle Scholar
  13. Gan WQ, Koehoorn M, Davies HW, Demers PA, Tamburic L, Brauer M (2011) Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. Environ Health Perspect 119:501–507CrossRefGoogle Scholar
  14. Ghio AJ, Kim C, Devlin RB (2000) Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med 162:981–988CrossRefGoogle Scholar
  15. Ghosh R, Lurmann F, Perez L, Penfold B, Brandt S, Wilson J, Milet M, Kunzli N, McConnell R (2016) Near-roadway air pollution and coronary heart disease: burden of disease and potential impact of a greenhouse gas reduction strategy in Southern California. Environ Health Perspect 124:193–200Google Scholar
  16. Hampel R, Ruckerl R, Yli-Tuomi T, Breitner S, Lanki T, Kraus U, Cyrys J, Belcredi P, Bruske I, Laitinen TM, Timonen K, Wichmann HE, Peters A, Schneider A (2014) Impact of personally measured pollutants on cardiac function. Int J Hyg Environ Health 217:460–464CrossRefGoogle Scholar
  17. Hampel R, Peters A, Beelen R, Brunekreef B, Cyrys J, de Faire U, de Hoogh K, Fuks K, Hoffmann B, Huls A, Imboden M, Jedynska A, Kooter I, Koenig W, Kunzli N, Leander K, Magnusson P, Mannisto S, Penell J, Pershagen G, Phuleria H, Probst-Hensch N, Pundt N, Schaffner E, Schikowski T, Sugiri D, Tiittanen P, Tsai MY, Wang M, Wolf K, Lanki T (2015) Long-term effects of elemental composition of particulate matter on inflammatory blood markers in European cohorts. Environ Int 82:76–84CrossRefGoogle Scholar
  18. He F, Shaffer ML, Li X, Rodriguez-Colon S, Wolbrette DL, Williams R, Cascio WE, Liao D (2011) Individual-level PM(2). (5) exposure and the time course of impaired heart rate variability: the APACR Study. J Expo Sci Environ Epidemiol 21:65–73CrossRefGoogle Scholar
  19. Hoffmann B, Moebus S, Stang A, Beck EM, Dragano N, Mohlenkamp S, Schmermund A, Memmesheimer M, Mann K, Erbel R, Jockel KH (2006) Residence close to high traffic and prevalence of coronary heart disease. Eur Heart J 27:2696–2702CrossRefGoogle Scholar
  20. Hoffmann B, Moebus S, Mohlenkamp S, Stang A, Lehmann N, Dragano N, Schmermund A, Memmesheimer M, Mann K, Erbel R, Jockel KH (2007) Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 116:489–496CrossRefGoogle Scholar
  21. Hoffmann B, Moebus S, Dragano N, Mohlenkamp S, Memmesheimer M, Erbel R, Jockel KH (2009a) Residential traffic exposure and coronary heart disease: results from the Heinz Nixdorf Recall Study. Biomarkers 14(Suppl 1):74–78CrossRefGoogle Scholar
  22. Hoffmann B, Moebus S, Dragano N, Stang A, Mohlenkamp S, Schmermund A, Memmesheimer M, Brocker-Preuss M, Mann K, Erbel R, Jockel KH (2009b) Chronic residential exposure to particulate matter air pollution and systemic inflammatory markers. Environ Health Perspect 117:1302–1308CrossRefGoogle Scholar
  23. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867CrossRefGoogle Scholar
  24. Jayagopal V, Kilpatrick ES, Jennings PE, Hepburn DA, Atkin SL (2002) Biological variation of homeostasis model assessment-derived insulin resistance in type 2 diabetes. Diab Care 25:2022–2025CrossRefGoogle Scholar
  25. Kan H, Heiss G, Rose KM, Whitsel EA, Lurmann F, London SJ (2008) Prospective analysis of traffic exposure as a risk factor for incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. Environ Health Perspect 116:1463–1468CrossRefGoogle Scholar
  26. Kingsley SL, Eliot MN, Whitsel EA, Wang Y, Coull BA, Hou L, Margolis HG, Margolis KL, Mu L, Wu WC, Johnson KC, Allison MA, Manson JE, Eaton CB, Wellenius GA (2015) Residential proximity to major roadways and incident hypertension in post-menopausal women. Environ Res 142:522–528CrossRefGoogle Scholar
  27. Kramer U, Herder C, Sugiri D, Strassburger K, Schikowski T, Ranft U, Rathmann W (2010) Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environ Health Perspect 118:1273–1279CrossRefGoogle Scholar
  28. Laden F, Neas LM, Dockery DW, Schwartz J (2000) Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect 108:941–947CrossRefGoogle Scholar
  29. Latalova K, Prasko J, Diveky T, Grambal A, Kamaradova D, Velartova H, Salinger J, Opavsky J (2010) Autonomic nervous system in euthymic patients with bipolar affective disorder. Neuro Endocrinol Lett 31:829–836Google Scholar
  30. Lee MS, Eum KD, Rodrigues EG, Magari SR, Fang SC, Modest GA, Christiani DC (2016) Effects of personal exposure to ambient fine particulate matter on acute change in nocturnal heart rate variability in subjects without overt heart disease. Am J Cardiol 117:151–156CrossRefGoogle Scholar
  31. Lei YC, Hwang JS, Chan CC, Lee CT, Cheng TJ (2005) Enhanced oxidative stress and endothelial dysfunction in streptozotocin-diabetic rats exposed to fine particles. Environ Res 99:335–343CrossRefGoogle Scholar
  32. Lenters V, Uiterwaal CS, Beelen R, Bots ML, Fischer P, Brunekreef B, Hoek G (2010) Long-term exposure to air pollution and vascular damage in young adults. Epidemiology 21:512–520CrossRefGoogle Scholar
  33. Longhin E, Pezzolato E, Mantecca P, Holme JA, Franzetti A, Camatini M, Gualtieri M (2013) Season linked responses to fine and quasi-ultrafine Milan PM in cultured cells. Toxicol In Vitro 27:551–559CrossRefGoogle Scholar
  34. Luttmann-Gibson H, Suh HH, Coull BA, Dockery DW, Sarnat SE, Schwartz J, Stone PH, Gold DR (2006) Short-term effects of air pollution on heart rate variability in senior adults in Steubenville, Ohio. J Occup Environ Med 48:780–788CrossRefGoogle Scholar
  35. Mills NL, Tornqvist H, Gonzalez MC, Vink E, Robinson SD, Soderberg S, Boon NA, Donaldson K, Sandstrom T, Blomberg A, Newby DE (2007) Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med 357:1075–1082CrossRefGoogle Scholar
  36. Min KB, Min JY, Cho SI, Paek D (2008) The relationship between air pollutants and heart-rate variability among community residents in Korea. Inhal Toxicol 20:435–444CrossRefGoogle Scholar
  37. Mordukhovich I, Coull B, Kloog I, Koutrakis P, Vokonas P, Schwartz J (2015) Exposure to sub-chronic and long-term particulate air pollution and heart rate variability in an elderly cohort: the Normative Aging Study. Environ Health 14:87CrossRefGoogle Scholar
  38. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97CrossRefGoogle Scholar
  39. Peters A, Frohlich M, Doring A, Immervoll T, Wichmann HE, Hutchinson WL, Pepys MB, Koenig W (2001) Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. Eur Heart J 22:1198–1204CrossRefGoogle Scholar
  40. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334CrossRefGoogle Scholar
  41. Schwartz J (2001) Air pollution and blood markers of cardiovascular risk. Environ Health Perspect 109(Suppl 3):405–409CrossRefGoogle Scholar
  42. Schwartz J, Laden F, Zanobetti A (2002) The concentration-response relation between PM(2.5) and daily deaths. Environ Health Perspect 110:1025–1029CrossRefGoogle Scholar
  43. Schwarze PE, Ovrevik J, Hetland RB, Becher R, Cassee FR, Lag M, Lovik M, Dybing E, Refsnes M (2007) Importance of size and composition of particles for effects on cells in vitro. Inhal Toxicol 19(Suppl 1):17–22CrossRefGoogle Scholar
  44. Seagrave J (2008) Mechanisms and implications of air pollution particle associations with chemokines. Toxicol Appl Pharmacol 232:469–477CrossRefGoogle Scholar
  45. Shields KN, Cavallari JM, Hunt MJ, Lazo M, Molina M, Molina L, Holguin F (2013) Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: a panel study. Environ Health 12:7CrossRefGoogle Scholar
  46. Sorensen M, Daneshvar B, Hansen M, Dragsted LO, Hertel O, Knudsen L, Loft S (2003) Personal PM2.5 exposure and markers of oxidative stress in blood. Environ Health Perspect 111:161–166CrossRefGoogle Scholar
  47. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, Cai Y, Ostrowski MC, Lu B, Parthasarathy S, Brook RD, Moffatt-Bruce SD, Chen LC, Rajagopalan S (2009) Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation 119:538–546CrossRefGoogle Scholar
  48. Sun Z, Mukherjee B, Brook RD, Gatts GA, Yang F, Sun Q, Brook JR, Fan Z, Rajagopalan S (2013) Air-pollution and cardiometabolic diseases (AIRCMD): a prospective study investigating the impact of air pollution exposure and propensity for type II diabetes. Sci Total Environ 448:72–78CrossRefGoogle Scholar
  49. Thiering E, Cyrys J, Kratzsch J, Meisinger C, Hoffmann B, Berdel D, von Berg A, Koletzko S, Bauer CP, Heinrich J (2013) Long-term exposure to traffic-related air pollution and insulin resistance in children: results from the GINIplus and LISAplus birth cohorts. Diabetologia 56:1696–1704CrossRefGoogle Scholar
  50. Thomas GD, Zhang W, Victor RG (2001) Impaired modulation of sympathetic vasoconstriction in contracting skeletal muscle of rats with chronic myocardial infarctions: role of oxidative stress. Circ Res 88:816–823CrossRefGoogle Scholar
  51. Wang Y, Eliot MN, Kuchel GA, Schwartz J, Coull BA, Mittleman MA, Lipsitz LA, Wellenius GA (2014) Long-term exposure to ambient air pollution and serum leptin in older adults: results from the MOBILIZE Boston study. J Occup Environ Med 56:e73–e77CrossRefGoogle Scholar
  52. Wauters A, Dreyfuss C, Pochet S, Hendrick P, Berkenboom G, van de Borne P, Argacha JF (2013) Acute exposure to diesel exhaust impairs nitric oxide-mediated endothelial vasomotor function by increasing endothelial oxidative stress. Hypertension 62:352–358CrossRefGoogle Scholar
  53. Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, Eber B (2004) Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation 109:184–189CrossRefGoogle Scholar
  54. Weinmayr G, Hennig F, Fuks K, Nonnemacher M, Jakobs H, Mohlenkamp S, Erbel R, Jockel KH, Hoffmann B, Moebus S (2015) Long-term exposure to fine particulate matter and incidence of type 2 diabetes mellitus in a cohort study: effects of total and traffic-specific air pollution. Environ Health 14:53CrossRefGoogle Scholar
  55. Wilkinson IB, Mohammad NH, Tyrrell S, Hall IR, Webb DJ, Paul VE, Levy T, Cockcroft JR (2002) Heart rate dependency of pulse pressure amplification and arterial stiffness. Am J Hypertens 15:24–30CrossRefGoogle Scholar
  56. Xie Y, Bo L, Jiang S, Tian Z, Kan H, Li Y, Song W, Zhao J (2016) Individual PM exposure is associated with the impairment of cardiac autonomic modulation in general residents. Environ Sci Pollut Res Int. doi: 10.1007/s11356-015-5933-1
  57. Xu X, Liu C, Xu Z, Tzan K, Zhong M, Wang A, Lippmann M, Chen LC, Rajagopalan S, Sun Q (2011a) Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. Toxicol Sci 124:88–98CrossRefGoogle Scholar
  58. Xu Z, Xu X, Zhong M, Hotchkiss IP, Lewandowski RP, Wagner JG, Bramble LA, Yang Y, Wang A, Harkema JR, Lippmann M, Rajagopalan S, Chen LC, Sun Q (2011b) Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues. Part Fibre Toxicol 8:20CrossRefGoogle Scholar
  59. Ying Z, Xu X, Bai Y, Zhong J, Chen M, Liang Y, Zhao J, Liu D, Morishita M, Sun Q, Spino C, Brook RD, Harkema JR, Rajagopalan S (2014) Long-term exposure to concentrated ambient PM2.5 increases mouse blood pressure through abnormal activation of the sympathetic nervous system: a role for hypothalamic inflammation. Environ Health Perspect 122:79–86Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shuo Jiang
    • 1
  • Liang Bo
    • 1
  • Changyi Gong
    • 1
  • Xihao Du
    • 1
  • Haidong Kan
    • 1
  • Yuquan Xie
    • 2
  • Weimin Song
    • 1
  • Jinzhuo Zhao
    • 1
    Email author
  1. 1.Department of Environmental Health, School of Public Health and Key Laboratory of Public Health SafetyFudan UniversityShanghaiChina
  2. 2.Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations