Chemosensory perception, symptoms and autonomic responses during chemical exposure in multiple chemical sensitivity

  • Linus AnderssonEmail author
  • Anna-Sara Claeson
  • Thomas Meinertz Dantoft
  • Sine Skovbjerg
  • Nina Lind
  • Steven Nordin
Original Article



Multiple chemical sensitivity (MCS) is a prevalent medically unexplained symptom characterized by symptom reactions to everyday chemical exposure below hygienic thresholds. The aim of this study was to investigate the expressions of hyper-reactivity in MCS during whole-body exposure to low concentrations of the odorant n-butanol.


We exposed 18 participants with MCS and 18 non-ill controls to a low concentration of the odorant n-butanol using an exposure chamber. The first 10 min constituted blank exposure, after which the n-butanol concentration increased and reached a plateau at 11.5 mg/m3.


MCS participants, compared with controls, reported greater perceived odor intensities, more unpleasantness to the exposure and increasing symptoms over time. MCS participants also expressed higher pulse rate and lower pulse rate variability than controls did. No group differences were found for breathing rate or tonic electrodermal activity responses.


We conclude that MCS sufferers differ from healthy controls in terms of autonomic responses, symptoms and chemosensory perception during chemical exposure.


Multiple chemical sensitivity Chemical intolerance Environmental intolerance Olfaction Autonomic nervous system 



This study was supported by grants from the Swedish Research Council for Health, Working Life and Welfare (2011-0396), the Danish Ministry of the Environment, the Swedish Research Council Formas (2010-1401) and the Swedish Foundation for Humanities and Social Sciences (M14-0375:1).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards and approved by the Ethics Committee at Umeå University (Dnr 2013-19-31). Informed consent was obtained from all individual participants included in the study. All participants were given written and oral information about the study. All participants were given 500 SEK (~50 EUR) for their participation.


  1. Andersson L, Bende M, Millqvist E, Nordin S (2009) Attention bias and sensitization in chemical sensitivity. J Psychosom Res 66:407–416. doi: 10.1016/j.jpsychores.2008.11.005 CrossRefGoogle Scholar
  2. Andersson L, Claeson A-S, Ledin L et al (2013) The influence of health-risk perception and distress on reactions to low-level chemical exposure. Front Psychol 4:816. doi: 10.3389/fpsyg.2013.00816 Google Scholar
  3. Andersson L, Claeson A-S, Nyberg L et al (2014) Brain responses to olfactory and trigeminal exposure in idiopathic environmental illness (IEI) attributed to smells—an fMRI study. J Psychosom Res. doi: 10.1016/j.jpsychores.2014.09.014 Google Scholar
  4. Barsky AJ, Goodson JD, Lane RS, Cleary PD (1988) The amplification of somatic symptoms. Psychosom Med 50:510–519CrossRefGoogle Scholar
  5. Bascom R, Meggs WJ, Frampton M et al (1997) Neurogenic inflammation: with additional discussion of central and perceptual integration of nonneurogenic inflammation. Environ Health Perspect 105(Suppl 2):531–537CrossRefGoogle Scholar
  6. Bell IR (1996) Clinically relevant EEG studies and psychophysiological findings: possible neural mechanisms for multiple chemical sensitivity. Toxicology 111:101–117CrossRefGoogle Scholar
  7. Bell IR, Miller CS, Schwartz GE (1992) An olfactory-limbic model of multiple chemical sensitivity syndrome: possible relationships to kindling and affective spectrum disorders. Biol Psychiatry 32:218–242CrossRefGoogle Scholar
  8. Bell IR, Baldwin CM, Schwartz GE (2001) Sensitization studies in chemically intolerant individuals: implications for individual difference research. Ann N Y Acad Sci 933:38–47CrossRefGoogle Scholar
  9. Berg ND, Linneberg A, Dirksen A, Elberling J (2008) Prevalence of self-reported symptoms and consequences related to inhalation of airborne chemicals in a Danish general population. Int Arch Occup Environ Health 81:881–887. doi: 10.1007/s00420-007-0282-0 CrossRefGoogle Scholar
  10. Borg E, Borg G (2002) A comparison of AME and CR100 for scaling perceived exertion. Acta Psychol 109:157–175. doi: 10.1016/S0001-6918(01)00055-5 CrossRefGoogle Scholar
  11. Brüning T, Bartsch R, Bolt HM et al (2014) Sensory irritation as a basis for setting occupational exposure limits. Arch Toxicol 88:1855–1879. doi: 10.1007/s00204-014-1346-z CrossRefGoogle Scholar
  12. Cain WS (1989) Testing olfaction in a clinical setting. Ear Nose Throat J 68:322–332Google Scholar
  13. Caress SM, Steinemann AC (2003) A review of a two-phase population study of multiple chemical sensitivities. Environ Health Perspect 111:1490–1497. doi: 10.1289/ehp.5940 CrossRefGoogle Scholar
  14. Caress SM, Steinemann AC (2004) Prevalence of multiple chemical sensitivities: a population-based study in the southeastern United States. Am J Public Health 94:746–747CrossRefGoogle Scholar
  15. Carlsson F, Karlson B, Ørbaek P et al (2005) Prevalence of annoyance attributed to electrical equipment and smells in a Swedish population, and relationship with subjective health and daily functioning. Public Health 119:568–577. doi: 10.1016/j.puhe.2004.07.011 CrossRefGoogle Scholar
  16. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates Inc, Hillsdale, New JerseyGoogle Scholar
  17. Dalton PH, Jaén C (2010) Responses to odors in occupational environments. Curr Opin Allergy Clin Immunol 10:127–132. doi: 10.1097/ACI.0b013e3283373470 CrossRefGoogle Scholar
  18. Dantoft TM, Elberling J, Brix S et al (2014) An elevated pro-inflammatory cytokine profile in multiple chemical sensitivity. Psychoneuroendocrinology 40:140–150. doi: 10.1016/j.psyneuen.2013.11.012 CrossRefGoogle Scholar
  19. Das-Munshi J, Rubin GJ, Wessely S (2007) Multiple chemical sensitivities: review. Curr Opin Otolaryngol Head Neck Surg 15:274–280. doi: 10.1097/MOO.0b013e328259c360 CrossRefGoogle Scholar
  20. Derogatis LR, Rickels K, Rock AF (1976) The SCL-90 and the MMPI: a step in the validation of a new selfreport scale. Br J Psychiatry 128:280–289CrossRefGoogle Scholar
  21. De Luca C, Scordo MG, Cesareo E et al (2010) Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes. Toxicol Appl Pharmacol 248:285–292. doi: 10.1016/j.taap.2010.04.017 CrossRefGoogle Scholar
  22. De Luca C, Raskovic D, Pacifico V et al (2011) The search for reliable biomarkers of disease in multiple chemical sensitivity and other environmental intolerances. Int J Environ Res Public Health 8:2770–2797. doi: 10.3390/ijerph8072770 CrossRefGoogle Scholar
  23. Doty RL, Deems DA, Frye RE et al (1988) Olfactory sensitivity, nasal resistance, and autonomic function in patients with multiple chemical sensitivities. Arch Otolaryngol Head Neck Surg 114:1422–1427CrossRefGoogle Scholar
  24. Fridell M, Cesarec Z, Johansson M, Thorsen SM (2002) SCL-90 Svensk normering, standardisering och validering av symtomskalan. Statens institutionsstyrelse SiS, StockholmGoogle Scholar
  25. Gil E, Orini M, Bailón R et al (2010) Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol Meas 31:1271–1290. doi: 10.1088/0967-3334/31/9/015 CrossRefGoogle Scholar
  26. Hausteiner C, Bornschein S, Hansen J et al (2005) Self-reported chemical sensitivity in Germany: a population-based survey. Int J Hyg Environ Health 208:271–278. doi: 10.1016/j.ijheh.2005.03.006 CrossRefGoogle Scholar
  27. Hillert L, Musabasic V, Berglund H et al (2007) Odor processing in multiple chemical sensitivity. Hum Brain Mapp 28:172–182. doi: 10.1002/hbm.20266 CrossRefGoogle Scholar
  28. Hillert L, Jovanovic H, Åhs F, Savic I (2013) Women with multiple chemical sensitivity have increased harm avoidance and reduced 5-HT(1A) receptor binding potential in the anterior cingulate and amygdala. PLoS One 8:e54781. doi: 10.1371/journal.pone.0054781 CrossRefGoogle Scholar
  29. Johansson A, Brämerson A, Millqvist E et al (2005) Prevalence and risk factors for self-reported odour intolerance: the Skövde population-based study. Int Arch Occup Environ Health 78:559–564. doi: 10.1007/s00420-005-0616-8 CrossRefGoogle Scholar
  30. Kärnekull SC, Jönsson FU, Larsson M, Olofsson JK (2011) Affected by smells? Environmental chemical responsivity predicts odor perception. Chem Senses 36:641–648. doi: 10.1093/chemse/bjr028 CrossRefGoogle Scholar
  31. Kreutzer R, Neutra RR, Lashuay N (1999) Prevalence of people reporting sensitivities to chemicals in a population-based survey. Am J Epidemiol 150:1–12CrossRefGoogle Scholar
  32. Labarge AS, McCaffrey RJ (2000) Multiple chemical sensitivity: a review of the theoretical and research literature. Neuropsychol Rev 10:183–211CrossRefGoogle Scholar
  33. Lacour M, Zunder T, Schmidtke K et al (2005) Multiple chemical sensitivity syndrome (MCS)—suggestions for an extension of the US MCS-case definition. Int J Hyg Environ Health 208:141–151. doi: 10.1016/j.ijheh.2005.01.017 CrossRefGoogle Scholar
  34. Magnavita N (2001) Cacosmia in healthy workers. Br J Med Psychol 74:121–127CrossRefGoogle Scholar
  35. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904. doi: 10.1152/physrev.00041.2006 CrossRefGoogle Scholar
  36. Meggs WJ (1993) Neurogenic inflammation and sensitivity to environmental chemicals. Environ Health Perspect 101:234–238CrossRefGoogle Scholar
  37. Multiple chemical sensitivity (1999) A 1999 consensus. Arch Environ Health 54:147–9. doi:  10.1080/00039899909602251
  38. Nethercott JR, Davidoff LL, Curbow B, Abbey H (1993) Multiple chemical sensitivities syndrome: toward a working case definition. Arch Environ Health 48:19–26. doi: 10.1080/00039896.1993.9938389 CrossRefGoogle Scholar
  39. Nordin M, Nordin S (2013) Psychometric evaluation and normative data of the Swedish version of the 10-item perceived stress scale. Scand J Psychol 54:502–507. doi: 10.1111/sjop.12071 CrossRefGoogle Scholar
  40. Nordin S, Millqvist E, Löwhagen O, Bende M (2003) The chemical sensitivity scale: psychometric properties and comparison with the noise sensitivity scale. J Environ Psychol 23:359–367. doi: 10.1016/S0272-4944(03)00002-1 CrossRefGoogle Scholar
  41. Nordin S, Martinkauppi M, Olofsson J et al (2005) Chemosensory perception and event-related potentials in self-reported chemical hypersensitivity. Int J Psychophysiol 55:243–255. doi: 10.1016/j.ijpsycho.2004.08.003 CrossRefGoogle Scholar
  42. Österberg K, Ørbæk P, Karlson B et al (2003) Annoyance and performance during the experimental chemical challenge of subjects with multiple chemical sensitivity. Scand J Work Environ Health 29:40–50. doi: 10.5271/sjweh.703 CrossRefGoogle Scholar
  43. Pall ML (2003) Elevated nitric oxide/peroxynitrite theory of multiple chemical sensitivity: central role of N-methyl-D-aspartate receptors in the sensitivity mechanism. Environ Health Perspect 111:1461–1464. doi: 10.1289/ehp.5935 CrossRefGoogle Scholar
  44. Papo D, Eberlein-König B, Berresheim H-W et al (2006) Chemosensory function and psychological profile in patients with multiple chemical sensitivity: comparison with odor-sensitive and asymptomatic controls. J Psychosom Res 60:199–209. doi: 10.1016/j.jpsychores.2005.06.075 CrossRefGoogle Scholar
  45. Park J, Knudson S (2007) Medically unexplained physical symptoms. Health Rep 18:43–47. doi: 10.2165/00128415-200812110-00006 Google Scholar
  46. Ruth JH (1986) Odor thresholds and irritation levels of several chemical substances: a review. Am Ind Hyg Assoc J 47:A142–A151CrossRefGoogle Scholar
  47. Schäfer A, Vagedes J (2013) How accurate is pulse rate variability as an estimate of heart rate variability?: A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int J Cardiol 166:15–29. doi: 10.1016/j.ijcard.2012.03.119 CrossRefGoogle Scholar
  48. Siegel S, Kreutzer R (1997) Pavlovian conditioning and multiple chemical sensitivity. Environ Health Perspect 105(Suppl 2):521CrossRefGoogle Scholar
  49. Sorg BA (1999) Multiple chemical sensitivity: potential role for neural sensitization. Crit Rev Neurobiol 13:283–316Google Scholar
  50. Sterling P (2004) Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics. In: Schulkin J (ed) Allostasis, homeostasis, and the costs of adaptation, 1st edn. Cambridge University Press, Cambridge, UK, pp 1–36Google Scholar
  51. Sullivan JB, Bell IR, Meggs WJ (2001) Low-level chemical sensitivity and chemical intolerance. In: Sullivan JB, Krieger GR (eds) Clinical environmental health and toxic exposures, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, pp 412–430Google Scholar
  52. Thayer JF, Sternberg E (2006) Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci 1088:361–372. doi: 10.1196/annals.1366.014 CrossRefGoogle Scholar
  53. Tran MTD, Arendt-Nielsen L, Kupers R, Elberling J (2013) Multiple chemical sensitivity: on the scent of central sensitization. Int J Hyg Environ Health 216:202–210. doi: 10.1016/j.ijheh.2012.02.010 CrossRefGoogle Scholar
  54. Uhde E, Salthammer T (2007) Impact of reaction products from building materials and furnishings on indoor air quality—a review of recent advances in indoor chemistry. Atmos Environ 41:3111–3128. doi: 10.1016/j.atmosenv.2006.05.082 CrossRefGoogle Scholar
  55. Van den Bergh O, Devriese S, Winters W et al (2001) Acquiring symptoms in response to odors: a learning perspective on multiple chemical sensitivity. Ann N Y Acad Sci 933:278–290CrossRefGoogle Scholar
  56. Witthöft M, Gerlach AL, Bailer J (2006) Selective attention, memory bias, and symptom perception in idiopathic environmental intolerance and somatoform disorders. J Abnorm Psychol 115:397–407. doi: 10.1037/0021-843X.115.3.397 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Occupational and Public Health SciencesUniversity of GävleUmeåSweden
  2. 2.Department of PsychologyUmeå UniversityUmeåSweden
  3. 3.Danish Research Centre for Chemical SensitivitiesCopenhagen University Hospital GentofteGentofteDenmark
  4. 4.Department of Systems Biology, Center for Biological Sequence AnalysisTechnical University of DenmarkLyngbyDenmark

Personalised recommendations